Расчёт полей тороидально намагниченного цилиндра с намагниченностью обратной радиусу в опыте Дейны (опыт Николаева номер 31)

А.Ю.Дроздов

С.А. Дейна в ролике "Магниты Второе магнитное поле Николаева 4" https://www.youtube.com/watch?v=A2Lx-ONcMow (Текстовое писание ролика https://drive.google.com/file/d/0B-MmD2EU7WEbV3VCR0NvLXl6Rm8/view) представил опыт с взаимодействием двух соосно расположенных цилиндров со сверлением, тороидально намагничиваемых путём пропускания тока по проводу проходящему внутри сверлений.

Сама идея этого опыта принадлежит Г.Николаеву, который утверждал, что притяжения цилиндров противоречит классической электродинамике и для обьяснения притяжения цилиндров постулировал существование продольной силы Николаева, кроме традиционной силы Лоренца

В данной же работе, пользуясь матаппаратом классической электродинамики, я представляю расчёт полей тороидально намагниченного цилиндра, а также вычисляю силу их взаимодействия: силу Лоренца и силу Николаева.

Вводим цилиндрическую систему координат, в которой (вслед за Таммом) индексом $j$ обозначаем координаты молекулярных токов намагниченного цилиндра, а индексом $a$ обозначаем координаты точек наблюдения

In [1]:
zj = var("zj")
za = var("za")
rj = var("rj")
ra = var("ra")
phi = var("phi")

assume(rj>0)
assume(ra>0)

Введём переменные - пределы интегрирования по координатам молекулярных токов

In [2]:
zj1 = var("zj1") # левый торец цилиндра
zj2 = var("zj2") # правый торец цилиндра

rj1 = var("rj1") # радиус внутренней поверхности (сверления) цилиндра
rj2 = var("rj2") # радиус внешней цилиндрической поверхности цилиндра

Задаём размеры цилиндров в сантиметрах. Размеры цилиндров: диаметр 30 мм, длина 30 мм, диаметр внутреннего сверления 6 мм.

In [3]:
# sizes of cylinders in Deyna's video
Zj1 = -1.5
Zj2 =  1.5
Rj1 = 0.3
Rj2 = 1.5

Ra1 = Rj1
Ra2 = Rj2

DZ = Zj2 - Zj1
In [4]:
line_thick = 0.005
arr_l = 0.15
arr_h = 0.025
color = "green"

def draw_cylinder(z0 = 0):
    p  = line ([[z0 + Zj1,      Rj2                 ], [z0 + Zj2,Rj2]], color = color)
    p += line ([[z0 + Zj2-arr_l,Rj2+arr_h           ], [z0 + Zj2,Rj2]], color = color)
    p += line ([[z0 + Zj2-arr_l,Rj2-arr_h-line_thick], [z0 + Zj2,Rj2-line_thick]], color = color)

    p += line ([[z0 + Zj2,      Rj2                 ], [z0 + Zj2,Rj1]], color = color, linestyle="dashed")
    p += line ([[z0 + Zj2-arr_h,Rj1+arr_l           ], [z0 + Zj2,Rj1]], color = color)
    p += line ([[z0 + Zj2+arr_h,Rj1+arr_l           ], [z0 + Zj2,Rj1]], color = color)

    p += line ([[z0 + Zj2,      Rj1                 ], [z0 + Zj1,Rj1]], color = color)
    p += line ([[z0 + Zj1+arr_l,Rj1+arr_h           ], [z0 + Zj1,Rj1]], color = color)
    p += line ([[z0 + Zj1+arr_l,Rj1-arr_h-line_thick], [z0 + Zj1,Rj1-line_thick]], color = color)

    p += line ([[z0 + Zj1,      Rj1                 ], [z0 + Zj1,Rj2]], color = color, linestyle="dashed")
    p += line ([[z0 + Zj1-arr_h,Rj2-arr_l           ], [z0 + Zj1,Rj2]], color = color)
    p += line ([[z0 + Zj1+arr_h,Rj2-arr_l           ], [z0 + Zj1,Rj2]], color = color)

    p += line ([[z0 + Zj2-DZ/4,      (Rj1+Rj2)/2                 ], [z0 + Zj1+DZ/4,(Rj1+Rj2)/2]], color = color)
    p += line ([[z0 + Zj1+DZ/4+arr_l,(Rj1+Rj2)/2+arr_h           ], [z0 + Zj1+DZ/4,(Rj1+Rj2)/2]], color = color)
    p += line ([[z0 + Zj1+DZ/4+arr_l,(Rj1+Rj2)/2-arr_h-line_thick], [z0 + Zj1+DZ/4,(Rj1+Rj2)/2-line_thick]], color = color)
    
    
    p += line ([[z0 + Zj1,      -Rj2                 ], [z0 + Zj2,-Rj2]], color = color)
    p += line ([[z0 + Zj2-arr_l,-Rj2+arr_h           ], [z0 + Zj2,-Rj2]], color = color)
    p += line ([[z0 + Zj2-arr_l,-Rj2-arr_h-line_thick], [z0 + Zj2,-Rj2-line_thick]], color = color)

    p += line ([[z0 + Zj2,      -Rj2                 ], [z0 + Zj2,-Rj1]], color = color, linestyle="dashed")
    p += line ([[z0 + Zj2-arr_h,-Rj1-arr_l           ], [z0 + Zj2,-Rj1]], color = color)
    p += line ([[z0 + Zj2+arr_h,-Rj1-arr_l           ], [z0 + Zj2,-Rj1]], color = color)


    p += line ([[z0 + Zj2,      -Rj1                 ], [z0 + Zj1,-Rj1]], color = color)
    p += line ([[z0 + Zj1+arr_l,-Rj1+arr_h           ], [z0 + Zj1,-Rj1]], color = color)
    p += line ([[z0 + Zj1+arr_l,-Rj1-arr_h-line_thick], [z0 + Zj1,-Rj1-line_thick]], color = color)

    p += line ([[z0 + Zj1,      -Rj1                 ], [z0 + Zj1,-Rj2]], color = color, linestyle="dashed")
    p += line ([[z0 + Zj1-arr_h,-Rj2+arr_l           ], [z0 + Zj1,-Rj2]], color = color)
    p += line ([[z0 + Zj1+arr_h,-Rj2+arr_l           ], [z0 + Zj1,-Rj2]], color = color)

    p += line ([[z0 + Zj2-DZ/4,      -(Rj1+Rj2)/2                 ], [z0 + Zj1+DZ/4,-(Rj1+Rj2)/2]], color = color)
    p += line ([[z0 + Zj1+DZ/4+arr_l,-(Rj1+Rj2)/2+arr_h           ], [z0 + Zj1+DZ/4,-(Rj1+Rj2)/2]], color = color)
    p += line ([[z0 + Zj1+DZ/4+arr_l,-(Rj1+Rj2)/2-arr_h-line_thick], [z0 + Zj1+DZ/4,-(Rj1+Rj2)/2-line_thick]], color = color)

    p += ellipse((z0 + Zj1, 0), (Rj1)/4, (Rj1), color = color)
    p += ellipse((z0 + Zj1, 0), (Rj2)/4, (Rj2), color = color)

    p += arc((z0 + Zj2, 0), (Rj1)/4, (Rj1), sector=(-pi/2,pi/2), color = color)
    p += arc((z0 + Zj2, 0), (Rj2)/4, (Rj2), sector=(-pi/2,pi/2), color = "green")

    p += arc((z0 + Zj2, 0), (Rj1)/4, (Rj1), sector=(pi/2,3*pi/2), color = color, linestyle="dashed")
    p += arc((z0 + Zj2, 0), (Rj2)/4, (Rj2), sector=(pi/2,3*pi/2), color = color, linestyle="dashed")
    
    return p

p = draw_cylinder()
p += draw_cylinder(z0 = -DZ-1.0)
p.show(aspect_ratio = 1, axes=True)

Следуя Тамму, обозначаем вектор намагниченности цилиндра через $I$. В данном расчёте предположим, что цилиндр имеет только $\varphi$-тую компоненту намагниченности и величина этой намагниченности $I_{\varphi}$ inverse to the radius.

$J$ ток on the wire

$\oint {\vec H}\cdot {\vec {dl}}={\frac {4\pi}{c}}J$

$2\,\pi\,r\ {H_{\varphi}}_{wire}={\frac {4\pi}{c}}J$

${H_{\varphi}}_{wire}={\frac {2}{c\,r}}J$

$I_{\varphi} = \kappa\,{H_{\varphi}}_{wire}$

$I_{\varphi} = \kappa\,{\frac {2}{c\,r}}J$

Для поверхностного тока у Тамма можно почерпнуть формулу $js = c \cdot [I \times n]$ (параграф 61. Векторный потенциал магнитного поля при наличии магнентиков. Средняя плотность объёмных и поверхностных токов. Уравнение 61.10 - случай для вакуума) Для объёмного тока - формулу $jv = c \cdot rot(I)$ (там же, уравнение 61.9)

$js = c \cdot [I \times n] = \kappa\,{\frac {2}{r}}J$

In [5]:
c = var("c")                   # скорость света
kappa = var("kappa")           # Магнитная восприимчивость
J = var("J")                   # ток
js(J, kappa, r) = 2*J*kappa/r  # плотность поверхностного тока на внутренней и внешней цилиндрической поверхностях цилиндра
                               # js(rj1) = - 2*J*kappa/rji
                               # js(rj2) = + 2*J*kappa/rj2
jt(J, kappa, r) = 2*J*kappa/r  # плотность поверхностного тока на торцах цилиндра
                               # jt(rj) = + 2*J*kappa/rj # zj1
                               # jt(rj) = - 2*J*kappa/rj # zj2
jv(J, kappa, r) = 0            # плотность объёмного тока
In [6]:
z_j = var("z_j")
z_a = var("z_a")
r_j = var("r_j")
r_a = var("r_a")
I_0 = var("I_0")  # намагниченность

Зная среднюю плотность объёмных и поверхностных токов можно вычислить векторный потенциал магнитного поля тороидально намагниченного цилиндра. Следуя Тамму

$A=\frac{1}{c}\int{\frac{j_v}{R}}d{V}+\frac{1}{c}\int{\frac{j_s}{R}}d{S}$

Распишем в этом интеграле отдельно интегрирование по торцам и по цилиндрическим поверхностям

$A=\frac{1}{c}\int{\frac{j_v}{R}}d{V}+\frac{1}{c}\int{\frac{j_s}{R}}d{S_{s}}+\frac{1}{c}\int{\frac{j_t}{R}}d{S_{t}}$

В цилиндрической системе координат интегрирование по объёму цилиндра

$A_V=\frac{1}{c}\int{\frac{j_v}{R}}d{V}=\frac{1}{c}\int\limits_{{{r}_{j}}}\int\limits_{{{\varphi}_{j}}}\int\limits_{{{z}_{j}}} {\frac{j_v \left( {{r}_{j}} \right){{r}_{j}}}{R}\ }d{{z}_{j}}d{{\varphi }_{j}}d{{r}_{j}}$

интегрирование по цилиндрическим поверхностям цилиндра

$A_S=\frac{1}{c}\int{\frac{j_s}{R}}d{S_{s}}=\frac{1}{c}\int\limits_{{{\varphi}_{j}}}\int\limits_{{{z}_{j}}} {\frac{j_s \left( {{r}_{j}} \right){{r}_{j}}}{R}\ }d{{z}_{j}}d{{\varphi }_{j}}$

интегрирование по торцевым поверхностям цилиндра

$A_T=\frac{1}{c}\int{\frac{j_t}{R}}d{S_{t}}=\frac{1}{c}\int\limits_{{{r}_{j}}}\int\limits_{{{\varphi}_{j}}} {\frac{j_t \left( {{r}_{j}} \right){{r}_{j}}}{R}\ }d{{\varphi }_{j}}d{{r}_{j}}$

Во всех этих трёх интегралах нам потребуется интеграл $\int\limits_{0}^{2\pi}{\frac{1}{R}}d{\varphi}$ - обратного расстояния между точкой истока и точкой наблюдения в цилиндрической системе координат, проинтегрированный по координатному углу phi точек истока от нуля до $2\pi$

$R=\sqrt{(r_j\,sin(\varphi_j)-r_a\,sin(\varphi_a))^2+(r_j\,cos(\varphi_j)-r_a\,cos(\varphi_a))^2+(z_j-z_a)^2}$

Ввиду цилиндрической симметрии и ввиду того что

$\frac{\partial A}{\partial \varphi_a} = 0$

нам не потребуется дифференцирование векторного потенциала по $\varphi_a$ координате точек наблюдения, можно упростить расчёт полагая, что $\varphi_a = 0$, тогда

$R=\sqrt{r_j^2+r_a^2-2\,r_j\,r_a\,cos(\varphi_j)+(z_j-z_a)^2}$

В таком случае интеграл $IR_{\varphi}=\int\limits_{0}^{2\pi}{\frac{1}{R}}d{\varphi_j}$ выражается через полный эллиптический интеграл первого рода следующим образом:

In [7]:
from IPython.display import display, Math, Latex

rja2   = lambda rj, ra, zj, za : (rj-ra)^2+(zj-za)^2
module = lambda rj, ra, zj, za : - 4*rj*ra / rja2(rj, ra, zj, za)
IRphi_ = lambda rj, ra, zj, za : 4*elliptic_kc(module(rj, ra, zj, za)) / sqrt(rja2(rj, ra, zj, za))
display(Math("$$IR_{\\varphi} =" + latex(IRphi_(r_j, r_a, z_j, z_a)) + "$$"))
$$IR_{\varphi} = \frac{4 \, K\left(-\frac{4 \, r_{a} r_{j}}{{\left(r_{a} - r_{j}\right)}^{2} + {\left(z_{a} - z_{j}\right)}^{2}}\right)}{\sqrt{{\left(r_{a} - r_{j}\right)}^{2} + {\left(z_{a} - z_{j}\right)}^{2}}} $$
In [8]:
phi_j = var("phi_j")
Rja2 = lambda rj, ra, zj, za, phi_j : rj^2 + ra^2 - 2*rj*ra*cos(phi_j) + (zj-za)^2
one_per_R  = lambda rj, ra, zj, za, phi_j : 1 / sqrt(Rja2(rj, ra, zj, za, phi_j))
IRphi = lambda rj, ra, zj, za : integrate(one_per_R(rj, ra, zj, za, phi_j),(phi_j,0,2*pi))
display(Math("$$IR_{\\varphi} =" + latex(IRphi(r_j, r_a, z_j, z_a)) + "$$"))
$$IR_{\varphi} = \int_{0}^{2 \, \pi} \frac{1}{\sqrt{-2 \, r_{a} r_{j} \cos\left(\phi_{j}\right) + r_{a}^{2} + r_{j}^{2} + {\left(z_{a} - z_{j}\right)}^{2}}}\,{d \phi_{j}} $$
In [9]:
z_j1 = var("z_j1") # левый торец цилиндра
z_j2 = var("z_j2") # правый торец цилиндра

r_j1 = var("r_j1") # радиус внутренней поверхности (сверления) цилиндра
r_j2 = var("r_j2") # радиус внешней цилиндрической поверхности цилиндра

вспомогательные переменные для интегрирования источников векторного потенциала по поверхностным и объёмным токам

Интеграл по ${\varphi}_{j}$ векторного потенциала, создаваемого элементарным объёмом ${{r}_{j}}\,d{{\varphi}_{j}}d{r_j}d{z_j}$ цилиндра

$A_v=\frac{1}{c}\int\limits_{{{\varphi}_{j}}}{\frac{j_v \left( {{r}_{j}} \right){{r}_{j}}}{R}\ }d{{\varphi}_{j}}$

Интеграл по ${\varphi}_{j}$ векторного потенциала, создаваемого элементом площади ${{r}_{j}}\,d{{\varphi}_{j}}d{z_j}$ цилиндрической поверхности цилиндра

$A_s=\frac{1}{c}\int\limits_{{{\varphi}_{j}}}{\frac{j_s \left( {{r}_{j}} \right){{r}_{j}}}{R}\ }d{{\varphi}_{j}}$

Интеграл по ${\varphi}_{j}$ векторного потенциала, создаваемого элементом площади ${{r}_{j}}\,d{{\varphi}_{j}}d{r_j}$ торцевой поверхности цилиндра

$A_t=\frac{1}{c}\int\limits_{{{\varphi}_{j}}}{\frac{j_t \left( {{r}_{j}} \right){{r}_{j}}}{R}\ }d{{\varphi }_{j}}$

In [10]:
As = lambda J, c, kappa, rj, ra, zj, za, phi_j : one_per_R(rj, ra, zj, za, phi_j) * js(J, kappa, rj)*rj/c
display(Math("$$A_s =" + latex(As(J, c, kappa, r_j, r_a, z_j, z_a, phi_j)) + "$$"))

At = lambda J, c, kappa, rj, ra, zj, za, phi_j : one_per_R(rj, ra, zj, za, phi_j) * jt(J, kappa, rj)*rj/c * cos(phi_j)
display(Math("$$A_t =" + latex(At(J, c, kappa, r_j, r_a, z_j, z_a, phi_j)) + "$$"))

Av = lambda J, c, kappa, rj, ra, zj, za, phi_j : one_per_R(rj, ra, zj, za, phi_j) * jv(J, kappa, rj)*rj/c
display(Math("$$A_v =" + latex(Av(J, c, kappa, r_j, r_a, z_j, z_a, phi_j)) + "$$"))
$$A_s = \frac{2 \, J \kappa}{\sqrt{-2 \, r_{a} r_{j} \cos\left(\phi_{j}\right) + r_{a}^{2} + r_{j}^{2} + {\left(z_{a} - z_{j}\right)}^{2}} c} $$
$$A_t = \frac{2 \, J \kappa \cos\left(\phi_{j}\right)}{\sqrt{-2 \, r_{a} r_{j} \cos\left(\phi_{j}\right) + r_{a}^{2} + r_{j}^{2} + {\left(z_{a} - z_{j}\right)}^{2}} c} $$
$$A_v = 0 $$

Рассчитаем производную векторного потенциала, создаваемого торцевым поверхностным током, по $z_a$ координате точки наблюдения $\frac{\partial}{\partial z_a} A_t = \frac{\partial}{\partial z_a}\int\limits_{{{\varphi}_{j}}} {\frac{j_t \left( {{r}_{j}} \right){{r}_{j}}}{R}\ }d{{\varphi }_{j}}$

In [11]:
At_diff_za_ = lambda J, c, kappa, rj, ra, zj, za, phi_j : diff(At(J, c, kappa, rj, ra, zj, za, phi_j), za)

Итак, производная векторного потенциала, создаваемого торцевым поверхностным током, заключённом в плоском кольце толщиной $dr_j$ с радиусом $r_j$, по $z_a$ координате точки наблюдения

In [12]:
display(Math("$$\\frac{\\partial}{\\partial z_a} A_t(J, c, \\kappa, r_j, r_a, z_j, z_a, phi_j) = " + latex(At_diff_za_(J, c, kappa, rj, ra, zj, za, phi_j)) + "$$"))
$$\frac{\partial}{\partial z_a} A_t(J, c, \kappa, r_j, r_a, z_j, z_a, phi_j) = -\frac{2 \, J \kappa {\left(\mathit{za} - \mathit{zj}\right)} \cos\left(\phi_{j}\right)}{{\left(-2 \, \mathit{ra} \mathit{rj} \cos\left(\phi_{j}\right) + \mathit{ra}^{2} + \mathit{rj}^{2} + {\left(\mathit{za} - \mathit{zj}\right)}^{2}\right)}^{\frac{3}{2}} c} $$
In [13]:
exec(preparse("At_diff_za = lambda J, c, kappa, rj, ra, zj, za, phi_j : " + str(At_diff_za_(J, c, kappa, rj, ra, zj, za, phi_j))))
In [14]:
print (At_diff_za (J, c, kappa, rj, ra, zj, za, phi_j))
-2*J*kappa*(za - zj)*cos(phi_j)/((-2*ra*rj*cos(phi_j) + ra^2 + rj^2 + (za - zj)^2)^(3/2)*c)
In [15]:
display(Math(latex(At_diff_za (J, c, kappa, r_j, r_a, z_j, z_a, phi_j))))
$$-\frac{2 \, J \kappa {\left(z_{a} - z_{j}\right)} \cos\left(\phi_{j}\right)}{{\left(-2 \, r_{a} r_{j} \cos\left(\phi_{j}\right) + r_{a}^{2} + r_{j}^{2} + {\left(z_{a} - z_{j}\right)}^{2}\right)}^{\frac{3}{2}} c}$$

Учитывая положительное направление поверхностного тока в левом торце и отрицательное направление поверхностного тока в правом торце составим сумму полученной производной для обоих торцов

In [16]:
At2_diff_za_ = lambda J, c, kappa, rj, ra, zj1, zj2, za, phi_j : At_diff_za(J, c, kappa, rj, ra, zj1, za, phi_j) - At_diff_za(J, c, kappa, rj, ra, zj2, za, phi_j)

Итак, производная векторного потенциала, создаваемого торцевым поверхностным током обоих торцов, заключённом в двух плоских кольцах толщиной $dr_{j}$ и радиуса $r_{j}$, по $z$ координате точки наблюдения

In [17]:
exec(preparse("At2_diff_za = lambda J, c, kappa, rj, ra, zj1, zj2, za, phi_j : " + str(At2_diff_za_(J, c, kappa, rj, ra, zj1, zj2, za, phi_j))))
In [18]:
print(At2_diff_za (J, c, kappa, rj, ra, zj1, zj2, za, phi_j))
-2*J*kappa*(za - zj1)*cos(phi_j)/((-2*ra*rj*cos(phi_j) + ra^2 + rj^2 + (za - zj1)^2)^(3/2)*c) + 2*J*kappa*(za - zj2)*cos(phi_j)/((-2*ra*rj*cos(phi_j) + ra^2 + rj^2 + (za - zj2)^2)^(3/2)*c)
In [19]:
display(Math(latex(At2_diff_za (J, c, kappa, r_j, r_a, z_j1, z_j2, z_a, phi_j))))
$$-\frac{2 \, J \kappa {\left(z_{a} - z_{j_{1}}\right)} \cos\left(\phi_{j}\right)}{{\left(-2 \, r_{a} r_{j} \cos\left(\phi_{j}\right) + r_{a}^{2} + r_{j}^{2} + {\left(z_{a} - z_{j_{1}}\right)}^{2}\right)}^{\frac{3}{2}} c} + \frac{2 \, J \kappa {\left(z_{a} - z_{j_{2}}\right)} \cos\left(\phi_{j}\right)}{{\left(-2 \, r_{a} r_{j} \cos\left(\phi_{j}\right) + r_{a}^{2} + r_{j}^{2} + {\left(z_{a} - z_{j_{2}}\right)}^{2}\right)}^{\frac{3}{2}} c}$$

Рассчитаем производную векторного потенциала, создаваемого торцевым поверхностным током, по $r_a$ координате точки наблюдения $\frac{1}{r_a}\frac{\partial}{\partial r_a}\left(r_a\,A_t\right) = \frac{1}{r_a}\frac{\partial}{\partial r_a}\left(r_a\,\int\limits_{{{\varphi}_{j}}} {\frac{j_t \left( {{r}_{j}} \right){{r}_{j}}}{R}\ }d{{\varphi }_{j}}\right)$

In [20]:
At_ra_diff_ra_div_ra_ = lambda J, c, kappa, rj, ra, zj, za, phi_j : (ra*At(J, c, kappa, rj, ra, zj, za, phi_j)).diff(ra)/ra

Итак, производная векторного потенциала, создаваемого торцевым поверхностным током, заключённом в плоском кольце толщиной $dr_j$ с радиусом $r_j$, по $r_a$ координате точки наблюдения

In [21]:
display(Math("$$\\frac{1}{r_a}\\frac{\\partial}{\\partial r_a}\\left(r_a\\, A_t(J, c, \\kappa, r_j, r_a, z_j, z_a, phi_j)\\right) = " + latex(At_ra_diff_ra_div_ra_(J, c, kappa, rj, ra, zj, za, phi_j)) + "$$"))
$$\frac{1}{r_a}\frac{\partial}{\partial r_a}\left(r_a\, A_t(J, c, \kappa, r_j, r_a, z_j, z_a, phi_j)\right) = \frac{2 \, {\left(\frac{{\left(\mathit{rj} \cos\left(\phi_{j}\right) - \mathit{ra}\right)} J \kappa \mathit{ra} \cos\left(\phi_{j}\right)}{{\left(-2 \, \mathit{ra} \mathit{rj} \cos\left(\phi_{j}\right) + \mathit{ra}^{2} + \mathit{rj}^{2} + {\left(\mathit{za} - \mathit{zj}\right)}^{2}\right)}^{\frac{3}{2}} c} + \frac{J \kappa \cos\left(\phi_{j}\right)}{\sqrt{-2 \, \mathit{ra} \mathit{rj} \cos\left(\phi_{j}\right) + \mathit{ra}^{2} + \mathit{rj}^{2} + {\left(\mathit{za} - \mathit{zj}\right)}^{2}} c}\right)}}{\mathit{ra}} $$
In [22]:
exec(preparse("At_ra_diff_ra_div_ra = lambda J, c, kappa, rj, ra, zj, za, phi_j : " + str(At_ra_diff_ra_div_ra_(J, c, kappa, rj, ra, zj, za, phi_j))))
In [23]:
print (At_ra_diff_ra_div_ra (J, c, kappa, rj, ra, zj, za, phi_j))
2*((rj*cos(phi_j) - ra)*J*kappa*ra*cos(phi_j)/((-2*ra*rj*cos(phi_j) + ra^2 + rj^2 + (za - zj)^2)^(3/2)*c) + J*kappa*cos(phi_j)/(sqrt(-2*ra*rj*cos(phi_j) + ra^2 + rj^2 + (za - zj)^2)*c))/ra
In [24]:
display(Math(latex(At_ra_diff_ra_div_ra (J, c, kappa, r_j, r_a, z_j, z_a, phi_j))))
$$\frac{2 \, {\left(\frac{{\left(r_{j} \cos\left(\phi_{j}\right) - r_{a}\right)} J \kappa r_{a} \cos\left(\phi_{j}\right)}{{\left(-2 \, r_{a} r_{j} \cos\left(\phi_{j}\right) + r_{a}^{2} + r_{j}^{2} + {\left(z_{a} - z_{j}\right)}^{2}\right)}^{\frac{3}{2}} c} + \frac{J \kappa \cos\left(\phi_{j}\right)}{\sqrt{-2 \, r_{a} r_{j} \cos\left(\phi_{j}\right) + r_{a}^{2} + r_{j}^{2} + {\left(z_{a} - z_{j}\right)}^{2}} c}\right)}}{r_{a}}$$

Учитывая положительное направление поверхностного тока в левом торце и отрицательное направление поверхностного тока в правом торце составим сумму полученной производной для обоих торцов

In [25]:
At2_ra_diff_ra_div_ra_ = lambda J, c, kappa, rj, ra, zj1, zj2, za, phi_j : At_ra_diff_ra_div_ra_(J, c, kappa, rj, ra, zj1, za, phi_j) - At_ra_diff_ra_div_ra_(J, c, kappa, rj, ra, zj2, za, phi_j)

Итак, производная векторного потенциала, создаваемого торцевым поверхностным током обоих торцов, заключённом в двух плоских кольцах толщиной $dr_{j}$ и радиуса $r_{j}$, по $r$ координате точки наблюдения

In [26]:
exec(preparse("At2_ra_diff_ra_div_ra = lambda J, c, kappa, rj, ra, zj1, zj2, za, phi_j : " + str(At2_ra_diff_ra_div_ra_(J, c, kappa, rj, ra, zj1, zj2, za, phi_j))))
In [27]:
print(At2_ra_diff_ra_div_ra (J, c, kappa, rj, ra, zj1, zj2, za, phi_j))
2*((rj*cos(phi_j) - ra)*J*kappa*ra*cos(phi_j)/((-2*ra*rj*cos(phi_j) + ra^2 + rj^2 + (za - zj1)^2)^(3/2)*c) + J*kappa*cos(phi_j)/(sqrt(-2*ra*rj*cos(phi_j) + ra^2 + rj^2 + (za - zj1)^2)*c))/ra - 2*((rj*cos(phi_j) - ra)*J*kappa*ra*cos(phi_j)/((-2*ra*rj*cos(phi_j) + ra^2 + rj^2 + (za - zj2)^2)^(3/2)*c) + J*kappa*cos(phi_j)/(sqrt(-2*ra*rj*cos(phi_j) + ra^2 + rj^2 + (za - zj2)^2)*c))/ra
In [28]:
display(Math(latex(At2_ra_diff_ra_div_ra (J, c, kappa, r_j, r_a, z_j1, z_j2, z_a, phi_j))))
$$\frac{2 \, {\left(\frac{{\left(r_{j} \cos\left(\phi_{j}\right) - r_{a}\right)} J \kappa r_{a} \cos\left(\phi_{j}\right)}{{\left(-2 \, r_{a} r_{j} \cos\left(\phi_{j}\right) + r_{a}^{2} + r_{j}^{2} + {\left(z_{a} - z_{j_{1}}\right)}^{2}\right)}^{\frac{3}{2}} c} + \frac{J \kappa \cos\left(\phi_{j}\right)}{\sqrt{-2 \, r_{a} r_{j} \cos\left(\phi_{j}\right) + r_{a}^{2} + r_{j}^{2} + {\left(z_{a} - z_{j_{1}}\right)}^{2}} c}\right)}}{r_{a}} - \frac{2 \, {\left(\frac{{\left(r_{j} \cos\left(\phi_{j}\right) - r_{a}\right)} J \kappa r_{a} \cos\left(\phi_{j}\right)}{{\left(-2 \, r_{a} r_{j} \cos\left(\phi_{j}\right) + r_{a}^{2} + r_{j}^{2} + {\left(z_{a} - z_{j_{2}}\right)}^{2}\right)}^{\frac{3}{2}} c} + \frac{J \kappa \cos\left(\phi_{j}\right)}{\sqrt{-2 \, r_{a} r_{j} \cos\left(\phi_{j}\right) + r_{a}^{2} + r_{j}^{2} + {\left(z_{a} - z_{j_{2}}\right)}^{2}} c}\right)}}{r_{a}}$$

Рассчитаем производную векторного потенциала, создаваемого поверхностным током цилиндрической поверхности, по $r_a$ координате точки наблюдения $\frac{\partial}{\partial r_a} A_s = \frac{\partial}{\partial r_a}\int\limits_{{{\varphi}_{j}}} {\frac{j_s \left( {{r}_{j}} \right){{r}_{j}}}{R}\ }d{{\varphi }_{j}}$

In [29]:
As_diff_ra_ = lambda J, c, kappa, rj, ra, zj, za, phi_j : As(J, c, kappa, rj, ra, zj, za, phi_j).diff(ra)

Итак, производная векторного потенциала, создаваемого поверхностным током цилиндрической поверхности радиуса $r_{j}$, заключённой в поверхностном кольце шириной $dz_{j}$ c координатой $z_{j}$, по $r$ координате точки наблюдения

In [30]:
display(Math("$$\\frac{\\partial}{\\partial r_a} A_s (J, c, \\kappa, r_j, r_a, z_j, z_a, phi_j) = " + latex(As_diff_ra_(J, c, kappa, rj, ra, zj, za, phi_j)) + "$$"))
$$\frac{\partial}{\partial r_a} A_s (J, c, \kappa, r_j, r_a, z_j, z_a, phi_j) = \frac{2 \, {\left(\mathit{rj} \cos\left(\phi_{j}\right) - \mathit{ra}\right)} J \kappa}{{\left(-2 \, \mathit{ra} \mathit{rj} \cos\left(\phi_{j}\right) + \mathit{ra}^{2} + \mathit{rj}^{2} + {\left(\mathit{za} - \mathit{zj}\right)}^{2}\right)}^{\frac{3}{2}} c} $$
In [31]:
exec(preparse("As_diff_ra = lambda J, c, kappa, rj, ra, zj, za, phi_j : " + str(As_diff_ra_(J, c, kappa, rj, ra, zj, za, phi_j))))
In [32]:
print(As_diff_ra (J, c, kappa, rj, ra, zj, za, phi_j))
2*(rj*cos(phi_j) - ra)*J*kappa/((-2*ra*rj*cos(phi_j) + ra^2 + rj^2 + (za - zj)^2)^(3/2)*c)
In [33]:
display(Math(latex(As_diff_ra (J, c, kappa, r_j, r_a, z_j, z_a, phi_j))))
$$\frac{2 \, {\left(r_{j} \cos\left(\phi_{j}\right) - r_{a}\right)} J \kappa}{{\left(-2 \, r_{a} r_{j} \cos\left(\phi_{j}\right) + r_{a}^{2} + r_{j}^{2} + {\left(z_{a} - z_{j}\right)}^{2}\right)}^{\frac{3}{2}} c}$$

Учитывая отрицательное направление поверхностного тока на внутренней цилиндрической поверхности (в сверлении) и положительное направление поверхностного тока на внешней цилиндрической поверхности составим сумму полученной производной для обоих цилиндрических поверхностей

In [34]:
As2_diff_ra_ = lambda J, c, kappa, rj1, rj2, ra, zj, za, phi_j : - As_diff_ra_(J, c, kappa, rj1, ra, zj, za, phi_j) + As_diff_ra_(J, c, kappa, rj2, ra, zj, za, phi_j)

Итак, производная векторного потенциала, создаваемого поверхностными токами обоих цилиндрических поверхностей, заключённом в двух поверхностных кольцах шириной $dz_{j}$ c координатой $z_{j}$, по $r$ координате точки наблюдения

In [35]:
exec(preparse("As2_diff_ra = lambda J, c, kappa, rj1, rj2, ra, zj, za, phi_j : " + str(As2_diff_ra_(J, c, kappa, rj1, rj2, ra, zj, za, phi_j))))
In [36]:
print (As2_diff_ra (J, c, kappa, rj1, rj2, ra, zj, za, phi_j))
-2*(rj1*cos(phi_j) - ra)*J*kappa/((-2*ra*rj1*cos(phi_j) + ra^2 + rj1^2 + (za - zj)^2)^(3/2)*c) + 2*(rj2*cos(phi_j) - ra)*J*kappa/((-2*ra*rj2*cos(phi_j) + ra^2 + rj2^2 + (za - zj)^2)^(3/2)*c)
In [37]:
display(Math(latex(As2_diff_ra (J, c, kappa, r_j1, r_j2, r_a, z_j, z_a, phi_j))))
$$-\frac{2 \, {\left(r_{j_{1}} \cos\left(\phi_{j}\right) - r_{a}\right)} J \kappa}{{\left(-2 \, r_{a} r_{j_{1}} \cos\left(\phi_{j}\right) + r_{a}^{2} + r_{j_{1}}^{2} + {\left(z_{a} - z_{j}\right)}^{2}\right)}^{\frac{3}{2}} c} + \frac{2 \, {\left(r_{j_{2}} \cos\left(\phi_{j}\right) - r_{a}\right)} J \kappa}{{\left(-2 \, r_{a} r_{j_{2}} \cos\left(\phi_{j}\right) + r_{a}^{2} + r_{j_{2}}^{2} + {\left(z_{a} - z_{j}\right)}^{2}\right)}^{\frac{3}{2}} c}$$

Рассчитаем производную векторного потенциала, создаваемого поверхностным током цилиндрической поверхности, по $z_a$ координате точки наблюдения $\frac{\partial}{\partial z_a} A_s = \frac{\partial}{\partial z_a}\int\limits_{{{\varphi}_{j}}} {\frac{j_s \left( {{r}_{j}} \right){{r}_{j}}}{R}\ }d{{\varphi }_{j}}$

In [38]:
As_diff_za_ = lambda J, c, kappa, rj, ra, zj, za, phi_j : As(J, c, kappa, rj, ra, zj, za, phi_j).diff(za)

Итак, производная векторного потенциала, создаваемого поверхностным током цилиндрической поверхности радиуса $r_{j}$, заключённой в поверхностном кольце шириной $dz_{j}$ c координатой $z_{j}$, по $z$ координате точки наблюдения

In [39]:
display(Math("$$\\frac{\\partial}{\\partial z_a} A_s (J, c, \\kappa, r_j, r_a, z_j, z_a, phi_j) = " + latex(As_diff_za_(J, c, kappa, rj, ra, zj, za, phi_j)) + "$$"))
$$\frac{\partial}{\partial z_a} A_s (J, c, \kappa, r_j, r_a, z_j, z_a, phi_j) = -\frac{2 \, J \kappa {\left(\mathit{za} - \mathit{zj}\right)}}{{\left(-2 \, \mathit{ra} \mathit{rj} \cos\left(\phi_{j}\right) + \mathit{ra}^{2} + \mathit{rj}^{2} + {\left(\mathit{za} - \mathit{zj}\right)}^{2}\right)}^{\frac{3}{2}} c} $$
In [40]:
exec(preparse("As_diff_za = lambda J, c, kappa, rj, ra, zj, za, phi_j : " + str(As_diff_za_(J, c, kappa, rj, ra, zj, za, phi_j))))
In [41]:
print(As_diff_za (J, c, kappa, rj, ra, zj, za, phi_j))
-2*J*kappa*(za - zj)/((-2*ra*rj*cos(phi_j) + ra^2 + rj^2 + (za - zj)^2)^(3/2)*c)
In [42]:
display(Math(latex(As_diff_za (J, c, kappa, r_j, r_a, z_j, z_a, phi_j))))
$$-\frac{2 \, J \kappa {\left(z_{a} - z_{j}\right)}}{{\left(-2 \, r_{a} r_{j} \cos\left(\phi_{j}\right) + r_{a}^{2} + r_{j}^{2} + {\left(z_{a} - z_{j}\right)}^{2}\right)}^{\frac{3}{2}} c}$$

Учитывая отрицательное направление поверхностного тока на внутренней цилиндрической поверхности (в сверлении) и положительное направление поверхностного тока на внешней цилиндрической поверхности составим сумму полученной производной для обоих цилиндрических поверхностей

In [43]:
As2_diff_za_ = lambda J, c, kappa, rj1, rj2, ra, zj, za, phi_j : - As_diff_za_(J, c, kappa, rj1, ra, zj, za, phi_j) + As_diff_za_(J, c, kappa, rj2, ra, zj, za, phi_j)

Итак, производная векторного потенциала, создаваемого поверхностными токами обоих цилиндрических поверхностей, заключённом в двух поверхностных кольцах шириной $dz_{j}$ c координатой $z_{j}$, по $z$ координате точки наблюдения

In [44]:
exec(preparse("As2_diff_za = lambda J, c, kappa, rj1, rj2, ra, zj, za, phi_j : " + str(As2_diff_za_(J, c, kappa, rj1, rj2, ra, zj, za, phi_j))))
In [45]:
print (As2_diff_za (J, c, kappa, rj1, rj2, ra, zj, za, phi_j))
2*J*kappa*(za - zj)/((-2*ra*rj1*cos(phi_j) + ra^2 + rj1^2 + (za - zj)^2)^(3/2)*c) - 2*J*kappa*(za - zj)/((-2*ra*rj2*cos(phi_j) + ra^2 + rj2^2 + (za - zj)^2)^(3/2)*c)
In [46]:
display(Math(latex(As2_diff_za (J, c, kappa, r_j1, r_j2, r_a, z_j, z_a, phi_j))))
$$\frac{2 \, J \kappa {\left(z_{a} - z_{j}\right)}}{{\left(-2 \, r_{a} r_{j_{1}} \cos\left(\phi_{j}\right) + r_{a}^{2} + r_{j_{1}}^{2} + {\left(z_{a} - z_{j}\right)}^{2}\right)}^{\frac{3}{2}} c} - \frac{2 \, J \kappa {\left(z_{a} - z_{j}\right)}}{{\left(-2 \, r_{a} r_{j_{2}} \cos\left(\phi_{j}\right) + r_{a}^{2} + r_{j_{2}}^{2} + {\left(z_{a} - z_{j}\right)}^{2}\right)}^{\frac{3}{2}} c}$$

Теперь необходимо составить производную векторного потенциала, создаваемого объёмным током поверхности, по $r_a$ координате точки наблюдения $\frac{\partial}{\partial r_a} A_v = \frac{\partial}{\partial r_a}\int\limits_{{{\varphi}_{j}}} {\frac{j_v \left( {{r}_{j}} \right){{r}_{j}}}{R}\ }d{{\varphi }_{j}}$

In [47]:
Av_diff_ra_ = lambda J, c, kappa, rj, ra, zj, za, phi_j : Av(J, c, kappa, rj, ra, zj, za, phi_j).diff(ra)

Итак, производная векторного потенциала, создаваемого объёмным током, заключённом в объёмном кольце шириной $dz_{j}$ c координатой $z_{j}$ и толщиной $dr_{j}$ и радиуса $r_j$, по $r$ координате точки наблюдения

In [48]:
display(Math("$$\\frac{\\partial}{\\partial r_a} A_v (J, c, \\kappa, r_j, r_a, z_j, z_a, phi_j) =" + latex(Av_diff_ra_(J, c, kappa, rj, ra, zj, za, phi_j)) + "$$"))
$$\frac{\partial}{\partial r_a} A_v (J, c, \kappa, r_j, r_a, z_j, z_a, phi_j) = 0 $$
In [49]:
exec(preparse("Av_diff_ra = lambda J, c, kappa, rj, ra, zj, za, phi_j : " + str(Av_diff_ra_(J, c, kappa, rj, ra, zj, za, phi_j))))
In [50]:
print (Av_diff_ra (J, c, kappa, rj, ra, zj, za, phi_j))
0
In [51]:
display(Math(latex(Av_diff_ra (J, c, kappa, r_j, r_a, z_j, z_a, phi_j))))
$$0$$

Теперь необходимо составить производную векторного потенциала, создаваемого объёмным током поверхности, по $z_a$ координате точки наблюдения $\frac{\partial}{\partial z_a} A_v = \frac{\partial}{\partial z_a}\int\limits_{{{\varphi}_{j}}} {\frac{j_v \left( {{r}_{j}} \right){{r}_{j}}}{R}\ }d{{\varphi }_{j}}$

In [52]:
Av_diff_za_ = lambda J, c, kappa, rj, ra, zj, za, phi_j : Av(J, c, kappa, rj, ra, zj, za, phi_j).diff(za)

Итак, производная векторного потенциала, создаваемого объёмным током, заключённом в объёмном кольце шириной $dz_{j}$ c координатой $z_{j}$ и толщиной $dr_{j}$ и радиуса $r_j$, по $z$ координате точки наблюдения

In [53]:
display(Math("$$\\frac{\\partial}{\\partial z_a} A_v (J, c, \\kappa, r_j, r_a, z_j, z_a, phi_j) =" + latex(Av_diff_za_(J, c, kappa, rj, ra, zj, za, phi_j)) + "$$"))
$$\frac{\partial}{\partial z_a} A_v (J, c, \kappa, r_j, r_a, z_j, z_a, phi_j) = 0 $$
In [54]:
exec(preparse("Av_diff_za = lambda J, c, kappa, rj, ra, zj, za, phi_j : " + str(Av_diff_za_(J, c, kappa, rj, ra, zj, za, phi_j))))
In [55]:
print (Av_diff_za (J, c, kappa, rj, ra, zj, za, phi_j))
0
In [56]:
display(Math(latex(Av_diff_za (J, c, kappa, r_j, r_a, z_j, z_a, phi_j))))
$$0$$

Далее нам необходимо определить собственную функцию для численного интегрирования

In [57]:
def get_integrand_view(f):
    return f(x)

class my_dummy_integral:
    f = None
    a = None
    b = None
    def __init__(self, f, a, b):
        print ("my_dummy_integral ", f, a, b)
        self.f = f
        self.a = a
        self.b = b

def num_int(f, a, b):
    from scipy import integrate

    to_call_integration = True

    if type(f) is my_dummy_integral:
        to_call_integration = False

    import inspect
    stack = inspect.stack()
    for frame in stack:
        func_name = frame[3]
        # print ("func_name = ", func_name)
        if ('get_integrand_view' == func_name):
            to_call_integration = False
            break;

    if not to_call_integration:
        return my_dummy_integral(f,a,b)

    try:
        integral = integrate.quad(f, a, b)

        result = integral[0]
        return result

    except Exception as ex:

        print ("Exception ex = ", str(ex))
        print ("f = ", f)
        try:
            print ("integrand = ", get_integrand_view(f))
        except Exception as ex2:
            print ("Exception ex2 = ", ex2)
        print ("a = ", a)
        print ("b = ", b)

        raise ex

        integral = numerical_integral(f, a, b)

        print ("integral = ", integral)

        result = integral[0]
        print ("result = ", result)
        return result

Теперь необходимо производную векторного потенциала, создаваемого объёмным током, заключённом в объёмном кольце шириной $dz_j$ c координатой $z_j$ и толщиной $dr_j$ и радиуса $r_j$, по $r$ координате точки наблюдения - проинтегрировать по радиусу точек истока от $r_{j1}$ до $r_{j2}$

$\frac{\partial}{\partial r_a}\int\limits_{r_{j1}}^{r_{j2}}\int\limits_{{{\varphi}_{j}}} {\frac{j_v \left( {{r}_{j}} \right){{r}_{j}}}{R}\ }d{{\varphi }_{j}}d{{r}_{j}}$

In [58]:
AV_diff_ra_int_phi = lambda J, c, kappa, rj, ra, zj, za : num_int(lambda phi_j : Av_diff_ra(J, c, kappa, rj, ra, zj, za, phi_j), 0, 2*pi)
In [59]:
AV_diff_ra = lambda J, c, kappa, rj1, rj2, ra, zj, za : num_int(lambda rj : AV_diff_ra_int_phi(J, c, kappa, rj, ra, zj, za), rj1, rj2)

Теперь необходимо производную векторного потенциала, создаваемого объёмным током, заключённом в объёмном кольце шириной $dz_j$ c координатой $z_j$ и толщиной $dr_j$ и радиуса $r_j$, по $z$ координате точки наблюдения - проинтегрировать по радиусу точек истока от $r_{j1}$ до $r_{j2}$

$\frac{\partial}{\partial z_a}\int\limits_{r_{j1}}^{r_{j2}}\int\limits_{{{\varphi}_{j}}} {\frac{j_v \left( {{r}_{j}} \right){{r}_{j}}}{R}\ }d{{\varphi }_{j}}d{{r}_{j}}$

In [60]:
AV_diff_za_int_phi = lambda J, c, kappa, rj, ra, zj, za : num_int(lambda phi_j : Av_diff_za(J, c, kappa, rj, ra, zj, za, phi_j), 0, 2*pi)
In [61]:
AV_diff_za = lambda J, c, kappa, rj1, rj2, ra, zj, za : num_int(lambda rj : AV_diff_za_int_phi(J, c, kappa, rj, ra, zj, za), rj1, rj2)

Производим подстановку размеров координат правого цилиндра - источника векторного потенциала в формулы производных векторного потенциала

In [62]:
# численные значения в системе гаусса
J_d = 250 * 3*10^9      # Ток в цепи достигает 250 А
kappa_d = 1100 / (4*pi) # Магнитная восприимчивость https://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%B0%D1%8F_%D0%B2%D0%BE%D1%81%D0%BF%D1%80%D0%B8%D0%B8%D0%BC%D1%87%D0%B8%D0%B2%D0%BE%D1%81%D1%82%D1%8C
c_d = 299792458 * 100
In [63]:
At_diff_za_subs_zj = lambda rj, ra, za : num_int(lambda phi_j : At2_diff_za(J_d, c_d, kappa_d, rj, ra, Zj1, Zj2, za, phi_j), 0, 2*pi)
In [64]:
At_ra_diff_ra_div_ra_subs_zj = lambda rj, ra, za : num_int(lambda phi_j : At2_ra_diff_ra_div_ra (J_d, c_d, kappa_d, rj, ra, Zj1, Zj2, za, phi_j), 0, 2*pi)
In [65]:
As_diff_ra_subs_rj = lambda ra, zj, za : num_int(lambda phi_j : As2_diff_ra(J_d, c_d, kappa_d, Rj1, Rj2, ra, zj, za, phi_j), 0, 2*pi)
In [66]:
As_diff_za_subs_rj = lambda ra, zj, za : num_int(lambda phi_j : As2_diff_za(J_d, c_d, kappa_d, Rj1, Rj2, ra, zj, za, phi_j), 0, 2*pi)
In [67]:
Av_diff_ra_subs_rj = lambda ra, zj, za : AV_diff_ra (J_d, c_d, kappa_d, Rj1, Rj2, ra, zj, za)
In [68]:
Av_diff_za_subs_rj = lambda ra, zj, za : AV_diff_za (J_d, c_d, kappa_d, Rj1, Rj2, ra, zj, za)

Определяем функцию расчёта векторного магнитного поля $H$ (компонента $\varphi$)

$H_{\varphi}=\frac{\partial}{\partial z_a}A_T - \frac{\partial}{\partial r_a}(A_S+A_V)$

In [69]:
def calc_H_phi(Za, Ra):
    At_diff_za_subs_zj_za_ra = lambda rj : At_diff_za_subs_zj(rj, Ra, Za)
    As_diff_ra_subs_rj_za_ra = lambda zj : As_diff_ra_subs_rj(Ra, zj, Za)

    #At_diff_za_num_int = At_diff_za_subs_zj_za_ra(rj).nintegral(rj, Rj1, Rj2)
    #As_diff_ra_num_int = As_diff_ra_subs_rj_za_ra(zj).nintegral(zj, Zj1, Zj2)
    At_diff_za_num_int = num_int( lambda rj : At_diff_za_subs_zj_za_ra(rj), Rj1, Rj2)
    As_diff_ra_num_int = num_int( lambda zj : As_diff_ra_subs_rj_za_ra(zj), Zj1, Zj2)
    Av_diff_ra_num_int = num_int( lambda zj : Av_diff_ra_subs_rj(Ra, zj, Za), Zj1, Zj2)
    As_v_diff_ra_num_int = As_diff_ra_num_int + Av_diff_ra_num_int

    H_phi_t = At_diff_za_num_int
    H_phi_sv = - As_v_diff_ra_num_int

    H_phi = H_phi_t + H_phi_sv
    print ("Ra =", Ra, "Za =", Za, "H_phi_t =", H_phi_t)
    print ("Ra =", Ra, "Za =", Za, "H_phi_sv =", H_phi_sv)
    print ("Ra =", Ra, "Za =", Za, "H_phi =", H_phi)

    return (H_phi, H_phi_t, H_phi_sv)

Определяем функцию расчёта скалярного магнитного поля $H_{||} = -\,div\,\vec{A}$

$H_{||}=-\frac{1}{r_a}\frac{\partial}{\partial r_a}\left(r_a\,A_T\right) - \frac{\partial}{\partial z_a}(A_S+A_V)$

In [70]:
def calc_H_scalar(Za, Ra):
    At_ra_diff_ra_div_ra_subs_zj_za_ra = lambda rj : At_ra_diff_ra_div_ra_subs_zj(rj, Ra, Za)
    As_diff_za_subs_rj_za_ra = lambda zj : As_diff_za_subs_rj(Ra, zj, Za)

    #At_ra_diff_ra_div_ra_num_int = At_ra_diff_ra_div_ra_subs_zj_za_ra(rj).nintegral(rj, Rj1, Rj2)
    #As_diff_za_num_int           = As_diff_za_subs_rj_za_ra(zj).nintegral(zj, Zj1, Zj2)
    At_ra_diff_ra_div_ra_num_int = num_int( lambda rj : At_ra_diff_ra_div_ra_subs_zj_za_ra(rj), Rj1, Rj2)
    As_diff_za_num_int           = num_int( lambda zj : As_diff_za_subs_rj_za_ra(zj), Zj1, Zj2)
    Av_diff_za_num_int           = num_int( lambda zj : Av_diff_za_subs_rj(Ra, zj, Za), Zj1, Zj2)
    As_v_diff_za_num_int         = As_diff_za_num_int + Av_diff_za_num_int

    H_scalar_t  = - At_ra_diff_ra_div_ra_num_int
    H_scalar_sv = - As_v_diff_za_num_int

    H_scalar = H_scalar_t + H_scalar_sv
    print ("Ra =", Ra, "Za =", Za, "H_scalar_t =", H_scalar_t)
    print ("Ra =", Ra, "Za =", Za, "H_scalar_sv =", H_scalar_sv)
    print ("Ra =", Ra, "Za =", Za, "H_scalar =", H_scalar)

    return (H_scalar, H_scalar_t, H_scalar_sv)

Запуск расчёта величины магнитного поля $H_{\varphi}$ для заданного набора значений зазора между цилиндрами

In [71]:
plot_data_h_phi = []
plot_data_h_phi_t = []
plot_data_h_phi_sv = []

Ra = Rj2
for dz in (0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5):
    Za = Zj1 - dz
    h_phi = calc_H_phi(Za, Ra)
    plot_data_h_phi += [(Za, h_phi[0])]
    plot_data_h_phi_t += [(Za, h_phi[1])]
    plot_data_h_phi_sv += [(Za, h_phi[2])]
Ra = 1.50000000000000 Za = -1.51000000000000 H_phi_t = 8788.395448816853
Ra = 1.50000000000000 Za = -1.51000000000000 H_phi_sv = -8788.395448815436
Ra = 1.50000000000000 Za = -1.51000000000000 H_phi = 1.4169927453622222e-09
Ra = 1.50000000000000 Za = -1.52000000000000 H_phi_t = 8777.075982259921
Ra = 1.50000000000000 Za = -1.52000000000000 H_phi_sv = -8777.075982259175
Ra = 1.50000000000000 Za = -1.52000000000000 H_phi = 7.457856554538012e-10
Ra = 1.50000000000000 Za = -1.53000000000000 H_phi_t = 8755.56443517509
Ra = 1.50000000000000 Za = -1.53000000000000 H_phi_sv = -8755.564435176333
Ra = 1.50000000000000 Za = -1.53000000000000 H_phi = -1.24236976262182e-09
Ra = 1.50000000000000 Za = -1.54000000000000 H_phi_t = 8727.450161532486
Ra = 1.50000000000000 Za = -1.54000000000000 H_phi_sv = -8727.450161532619
Ra = 1.50000000000000 Za = -1.54000000000000 H_phi = -1.3278622645884752e-10
Ra = 1.50000000000000 Za = -1.55000000000000 H_phi_t = 8694.447566823625
Ra = 1.50000000000000 Za = -1.55000000000000 H_phi_sv = -8694.44756682367
Ra = 1.50000000000000 Za = -1.55000000000000 H_phi = -4.547473508864641e-11
Ra = 1.50000000000000 Za = -1.60000000000000 H_phi_t = 8482.477468384883
Ra = 1.50000000000000 Za = -1.60000000000000 H_phi_sv = -8482.477468384757
Ra = 1.50000000000000 Za = -1.60000000000000 H_phi = 1.255102688446641e-10
Ra = 1.50000000000000 Za = -1.70000000000000 H_phi_t = 7936.303671976686
Ra = 1.50000000000000 Za = -1.70000000000000 H_phi_sv = -7936.303671976463
Ra = 1.50000000000000 Za = -1.70000000000000 H_phi = 2.2282620193436742e-10
Ra = 1.50000000000000 Za = -1.80000000000000 H_phi_t = 7319.278012197455
Ra = 1.50000000000000 Za = -1.80000000000000 H_phi_sv = -7319.278012197448
Ra = 1.50000000000000 Za = -1.80000000000000 H_phi = 6.366462912410498e-12
Ra = 1.50000000000000 Za = -1.90000000000000 H_phi_t = 6681.732860283313
Ra = 1.50000000000000 Za = -1.90000000000000 H_phi_sv = -6681.732860283315
Ra = 1.50000000000000 Za = -1.90000000000000 H_phi = -1.8189894035458565e-12
Ra = 1.50000000000000 Za = -2.00000000000000 H_phi_t = 6051.984031003136
Ra = 1.50000000000000 Za = -2.00000000000000 H_phi_sv = -6051.984031003115
Ra = 1.50000000000000 Za = -2.00000000000000 H_phi = 2.091837814077735e-11
Ra = 1.50000000000000 Za = -2.50000000000000 H_phi_t = 3443.581715201609
Ra = 1.50000000000000 Za = -2.50000000000000 H_phi_sv = -3443.5817152016184
Ra = 1.50000000000000 Za = -2.50000000000000 H_phi = -9.549694368615746e-12
Ra = 1.50000000000000 Za = -3.00000000000000 H_phi_t = 1885.4311302246201
Ra = 1.50000000000000 Za = -3.00000000000000 H_phi_sv = -1885.4311302245978
Ra = 1.50000000000000 Za = -3.00000000000000 H_phi = 2.2282620193436742e-11
Ra = 1.50000000000000 Za = -3.50000000000000 H_phi_t = 1047.104520318052
Ra = 1.50000000000000 Za = -3.50000000000000 H_phi_sv = -1047.1045203180586
Ra = 1.50000000000000 Za = -3.50000000000000 H_phi = -6.59383658785373e-12
Ra = 1.50000000000000 Za = -4.00000000000000 H_phi_t = 601.2930005942873
Ra = 1.50000000000000 Za = -4.00000000000000 H_phi_sv = -601.2930005942874
Ra = 1.50000000000000 Za = -4.00000000000000 H_phi = -1.1368683772161603e-13
Ra = 1.50000000000000 Za = -4.50000000000000 H_phi_t = 358.8417148977581
Ra = 1.50000000000000 Za = -4.50000000000000 H_phi_sv = -358.84171489775815
Ra = 1.50000000000000 Za = -4.50000000000000 H_phi = -5.684341886080802e-14
Ra = 1.50000000000000 Za = -5.00000000000000 H_phi_t = 222.41938983744078
Ra = 1.50000000000000 Za = -5.00000000000000 H_phi_sv = -222.41938983744086
Ra = 1.50000000000000 Za = -5.00000000000000 H_phi = -8.526512829121202e-14
Ra = 1.50000000000000 Za = -5.50000000000000 H_phi_t = 142.7902979644878
Ra = 1.50000000000000 Za = -5.50000000000000 H_phi_sv = -142.79029796448785
Ra = 1.50000000000000 Za = -5.50000000000000 H_phi = -5.684341886080802e-14
Ra = 1.50000000000000 Za = -6.00000000000000 H_phi_t = 94.62637138601347
Ra = 1.50000000000000 Za = -6.00000000000000 H_phi_sv = -94.6263713860135
Ra = 1.50000000000000 Za = -6.00000000000000 H_phi = -2.842170943040401e-14
Ra = 1.50000000000000 Za = -6.50000000000000 H_phi_t = 64.51325305502222
Ra = 1.50000000000000 Za = -6.50000000000000 H_phi_sv = -64.51325305502226
Ra = 1.50000000000000 Za = -6.50000000000000 H_phi = -4.263256414560601e-14
Ra = 1.50000000000000 Za = -7.00000000000000 H_phi_t = 45.108540779367665
Ra = 1.50000000000000 Za = -7.00000000000000 H_phi_sv = -45.10854077936769
Ra = 1.50000000000000 Za = -7.00000000000000 H_phi = -2.1316282072803006e-14

Результирующий график магнитного поля $H_{\varphi}$ (эрстед) на расстоянии Ra = 1.5 см от оси цилиндрической системы координат в зависимости от координаты точки наблюдения $Z_a$

In [72]:
list_plot(plot_data_h_phi).show()
In [73]:
plot_data_h_phi = []
plot_data_h_phi_t = []
plot_data_h_phi_sv = []

Ra = Rj1
for dz in (0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5):
    Za = Zj1 - dz
    h_phi = calc_H_phi(Za, Ra)
    plot_data_h_phi += [(Za, h_phi[0])]
    plot_data_h_phi_t += [(Za, h_phi[1])]
    plot_data_h_phi_sv += [(Za, h_phi[2])]
Ra = 0.300000000000000 Za = -1.51000000000000 H_phi_t = 43065.27136398656
Ra = 0.300000000000000 Za = -1.51000000000000 H_phi_sv = -43065.27136398682
Ra = 0.300000000000000 Za = -1.51000000000000 H_phi = -2.6193447411060333e-10
Ra = 0.300000000000000 Za = -1.52000000000000 H_phi_t = 41062.22859285651
Ra = 0.300000000000000 Za = -1.52000000000000 H_phi_sv = -41062.22859285185
Ra = 0.300000000000000 Za = -1.52000000000000 H_phi = 4.663888830691576e-09
Ra = 0.300000000000000 Za = -1.53000000000000 H_phi_t = 39314.999702238354
Ra = 0.300000000000000 Za = -1.53000000000000 H_phi_sv = -39314.99970223839
Ra = 0.300000000000000 Za = -1.53000000000000 H_phi = -3.637978807091713e-11
Ra = 0.300000000000000 Za = -1.54000000000000 H_phi_t = 37734.66581022237
Ra = 0.300000000000000 Za = -1.54000000000000 H_phi_sv = -37734.665810222345
Ra = 0.300000000000000 Za = -1.54000000000000 H_phi = 2.1827872842550278e-11
Ra = 0.300000000000000 Za = -1.55000000000000 H_phi_t = 36279.10925668559
Ra = 0.300000000000000 Za = -1.55000000000000 H_phi_sv = -36279.10925668655
Ra = 0.300000000000000 Za = -1.55000000000000 H_phi = -9.604264050722122e-10
Ra = 0.300000000000000 Za = -1.60000000000000 H_phi_t = 30236.35339532732
Ra = 0.300000000000000 Za = -1.60000000000000 H_phi_sv = -30236.353395326958
Ra = 0.300000000000000 Za = -1.60000000000000 H_phi = 3.637978807091713e-10
Ra = 0.300000000000000 Za = -1.70000000000000 H_phi_t = 21714.640667455365
Ra = 0.300000000000000 Za = -1.70000000000000 H_phi_sv = -21714.64066745515
Ra = 0.300000000000000 Za = -1.70000000000000 H_phi = 2.1464074961841106e-10
Ra = 0.300000000000000 Za = -1.80000000000000 H_phi_t = 15942.953316064362
Ra = 0.300000000000000 Za = -1.80000000000000 H_phi_sv = -15942.953316064359
Ra = 0.300000000000000 Za = -1.80000000000000 H_phi = 3.637978807091713e-12
Ra = 0.300000000000000 Za = -1.90000000000000 H_phi_t = 11896.035382526068
Ra = 0.300000000000000 Za = -1.90000000000000 H_phi_sv = -11896.035382525939
Ra = 0.300000000000000 Za = -1.90000000000000 H_phi = 1.291482476517558e-10
Ra = 0.300000000000000 Za = -2.00000000000000 H_phi_t = 9008.007633627982
Ra = 0.300000000000000 Za = -2.00000000000000 H_phi_sv = -9008.00763362798
Ra = 0.300000000000000 Za = -2.00000000000000 H_phi = 1.8189894035458565e-12
Ra = 0.300000000000000 Za = -2.50000000000000 H_phi_t = 2697.524932606249
Ra = 0.300000000000000 Za = -2.50000000000000 H_phi_sv = -2697.524932606248
Ra = 0.300000000000000 Za = -2.50000000000000 H_phi = 9.094947017729282e-13
Ra = 0.300000000000000 Za = -3.00000000000000 H_phi_t = 1006.6917321633175
Ra = 0.300000000000000 Za = -3.00000000000000 H_phi_sv = -1006.691732163318
Ra = 0.300000000000000 Za = -3.00000000000000 H_phi = -4.547473508864641e-13
Ra = 0.300000000000000 Za = -3.50000000000000 H_phi_t = 436.032900134743
Ra = 0.300000000000000 Za = -3.50000000000000 H_phi_sv = -436.03290013474316
Ra = 0.300000000000000 Za = -3.50000000000000 H_phi = -1.7053025658242404e-13
Ra = 0.300000000000000 Za = -4.00000000000000 H_phi_t = 211.3541998330767
Ra = 0.300000000000000 Za = -4.00000000000000 H_phi_sv = -211.3541998330769
Ra = 0.300000000000000 Za = -4.00000000000000 H_phi = -1.9895196601282805e-13
Ra = 0.300000000000000 Za = -4.50000000000000 H_phi_t = 111.9272465041744
Ra = 0.300000000000000 Za = -4.50000000000000 H_phi_sv = -111.92724650417443
Ra = 0.300000000000000 Za = -4.50000000000000 H_phi = -2.842170943040401e-14
Ra = 0.300000000000000 Za = -5.00000000000000 H_phi_t = 63.622144030840616
Ra = 0.300000000000000 Za = -5.00000000000000 H_phi_sv = -63.62214403084063
Ra = 0.300000000000000 Za = -5.00000000000000 H_phi = -1.4210854715202004e-14
Ra = 0.300000000000000 Za = -5.50000000000000 H_phi_t = 38.30226730077447
Ra = 0.300000000000000 Za = -5.50000000000000 H_phi_sv = -38.30226730077446
Ra = 0.300000000000000 Za = -5.50000000000000 H_phi = 7.105427357601002e-15
Ra = 0.300000000000000 Za = -6.00000000000000 H_phi_t = 24.174578119417767
Ra = 0.300000000000000 Za = -6.00000000000000 H_phi_sv = -24.174578119417752
Ra = 0.300000000000000 Za = -6.00000000000000 H_phi = 1.4210854715202004e-14
Ra = 0.300000000000000 Za = -6.50000000000000 H_phi_t = 15.870907731977635
Ra = 0.300000000000000 Za = -6.50000000000000 H_phi_sv = -15.870907731977624
Ra = 0.300000000000000 Za = -6.50000000000000 H_phi = 1.0658141036401503e-14
Ra = 0.300000000000000 Za = -7.00000000000000 H_phi_t = 10.77191912511605
Ra = 0.300000000000000 Za = -7.00000000000000 H_phi_sv = -10.771919125116053
Ra = 0.300000000000000 Za = -7.00000000000000 H_phi = -3.552713678800501e-15

Результирующий график магнитного поля $H_{\varphi}$ (эрстед) на расстоянии Ra = 0.3 см от оси цилиндрической системы координат в зависимости от координаты точки наблюдения $Z_a$

In [74]:
list_plot(plot_data_h_phi).show()
In [75]:
plot_data_h_phi = []
plot_data_h_phi_t = []
plot_data_h_phi_sv = []

Ra = (Rj1 + Rj2) / 2
for dz in (0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5):
    Za = Zj1 - dz
    h_phi = calc_H_phi(Za, Ra)
    plot_data_h_phi += [(Za, h_phi[0])]
    plot_data_h_phi_t += [(Za, h_phi[1])]
    plot_data_h_phi_sv += [(Za, h_phi[2])]
Ra = 0.900000000000000 Za = -1.51000000000000 H_phi_t = 29833.15605712638
Ra = 0.900000000000000 Za = -1.51000000000000 H_phi_sv = -29833.156057131804
Ra = 0.900000000000000 Za = -1.51000000000000 H_phi = -5.424226401373744e-09
Ra = 0.900000000000000 Za = -1.52000000000000 H_phi_t = 29405.089799622416
Ra = 0.900000000000000 Za = -1.52000000000000 H_phi_sv = -29405.089799623358
Ra = 0.900000000000000 Za = -1.52000000000000 H_phi = -9.422365110367537e-10
Ra = 0.900000000000000 Za = -1.53000000000000 H_phi_t = 28977.484210322094
Ra = 0.900000000000000 Za = -1.53000000000000 H_phi_sv = -28977.48421032274
Ra = 0.900000000000000 Za = -1.53000000000000 H_phi = -6.439222488552332e-10
Ra = 0.900000000000000 Za = -1.54000000000000 H_phi_t = 28550.589840493376
Ra = 0.900000000000000 Za = -1.54000000000000 H_phi_sv = -28550.589840493463
Ra = 0.900000000000000 Za = -1.54000000000000 H_phi = -8.731149137020111e-11
Ra = 0.900000000000000 Za = -1.55000000000000 H_phi_t = 28124.65482478087
Ra = 0.900000000000000 Za = -1.55000000000000 H_phi_sv = -28124.654824780773
Ra = 0.900000000000000 Za = -1.55000000000000 H_phi = 9.822542779147625e-11
Ra = 0.900000000000000 Za = -1.60000000000000 H_phi_t = 26017.790710869882
Ra = 0.900000000000000 Za = -1.60000000000000 H_phi_sv = -26017.7907108698
Ra = 0.900000000000000 Za = -1.60000000000000 H_phi = 8.36735125631094e-11
Ra = 0.900000000000000 Za = -1.70000000000000 H_phi_t = 22004.04531430215
Ra = 0.900000000000000 Za = -1.70000000000000 H_phi_sv = -22004.045314302042
Ra = 0.900000000000000 Za = -1.70000000000000 H_phi = 1.0913936421275139e-10
Ra = 0.900000000000000 Za = -1.80000000000000 H_phi_t = 18391.134688900005
Ra = 0.900000000000000 Za = -1.80000000000000 H_phi_sv = -18391.13468890001
Ra = 0.900000000000000 Za = -1.80000000000000 H_phi = -3.637978807091713e-12
Ra = 0.900000000000000 Za = -1.90000000000000 H_phi_t = 15261.00092162567
Ra = 0.900000000000000 Za = -1.90000000000000 H_phi_sv = -15261.000921625673
Ra = 0.900000000000000 Za = -1.90000000000000 H_phi = -3.637978807091713e-12
Ra = 0.900000000000000 Za = -2.00000000000000 H_phi_t = 12620.153807626612
Ra = 0.900000000000000 Za = -2.00000000000000 H_phi_sv = -12620.153807626626
Ra = 0.900000000000000 Za = -2.00000000000000 H_phi = -1.4551915228366852e-11
Ra = 0.900000000000000 Za = -2.50000000000000 H_phi_t = 4970.616750160748
Ra = 0.900000000000000 Za = -2.50000000000000 H_phi_sv = -4970.616750160761
Ra = 0.900000000000000 Za = -2.50000000000000 H_phi = -1.2732925824820995e-11
Ra = 0.900000000000000 Za = -3.00000000000000 H_phi_t = 2138.98861884342
Ra = 0.900000000000000 Za = -3.00000000000000 H_phi_sv = -2138.988618843421
Ra = 0.900000000000000 Za = -3.00000000000000 H_phi = -9.094947017729282e-13
Ra = 0.900000000000000 Za = -3.50000000000000 H_phi_t = 1012.872038442211
Ra = 0.900000000000000 Za = -3.50000000000000 H_phi_sv = -1012.8720384422109
Ra = 0.900000000000000 Za = -3.50000000000000 H_phi = 1.1368683772161603e-13
Ra = 0.900000000000000 Za = -4.00000000000000 H_phi_t = 521.4767128070182
Ra = 0.900000000000000 Za = -4.00000000000000 H_phi_sv = -521.4767128070285
Ra = 0.900000000000000 Za = -4.00000000000000 H_phi = -1.0345502232667059e-11
Ra = 0.900000000000000 Za = -4.50000000000000 H_phi_t = 288.09030880860536
Ra = 0.900000000000000 Za = -4.50000000000000 H_phi_sv = -288.0903088086054
Ra = 0.900000000000000 Za = -4.50000000000000 H_phi = -5.684341886080802e-14
Ra = 0.900000000000000 Za = -5.00000000000000 H_phi_t = 168.82298549749913
Ra = 0.900000000000000 Za = -5.00000000000000 H_phi_sv = -168.82298549749927
Ra = 0.900000000000000 Za = -5.00000000000000 H_phi = -1.4210854715202004e-13
Ra = 0.900000000000000 Za = -5.50000000000000 H_phi_t = 103.94603989797217
Ra = 0.900000000000000 Za = -5.50000000000000 H_phi_sv = -103.94603989797221
Ra = 0.900000000000000 Za = -5.50000000000000 H_phi = -4.263256414560601e-14
Ra = 0.900000000000000 Za = -6.00000000000000 H_phi_t = 66.72746648509225
Ra = 0.900000000000000 Za = -6.00000000000000 H_phi_sv = -66.72746648509225
Ra = 0.900000000000000 Za = -6.00000000000000 H_phi = 0.0
Ra = 0.900000000000000 Za = -6.50000000000000 H_phi_t = 44.38291654331232
Ra = 0.900000000000000 Za = -6.50000000000000 H_phi_sv = -44.38291654331231
Ra = 0.900000000000000 Za = -6.50000000000000 H_phi = 7.105427357601002e-15
Ra = 0.900000000000000 Za = -7.00000000000000 H_phi_t = 30.433581632348726
Ra = 0.900000000000000 Za = -7.00000000000000 H_phi_sv = -30.433581632348755
Ra = 0.900000000000000 Za = -7.00000000000000 H_phi = -2.842170943040401e-14

Результирующий график магнитного поля $H_{\varphi}$ (эрстед) на расстоянии Ra = 0.9 см от оси цилиндрической системы координат в зависимости от координаты точки наблюдения $Z_a$

In [76]:
list_plot(plot_data_h_phi).show()

Запуск расчёта величины scalar магнитного поля для заданного набора значений зазора между цилиндрами

In [77]:
plot_data_h_scalar = []
plot_data_h_scalar_t = []
plot_data_h_scalar_sv = []

Ra = Rj2
for dz in (0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5):
    Za = Zj1 - dz
    h_scalar = calc_H_scalar(Za, Ra)
    plot_data_h_scalar += [(Za, h_scalar[0])]
    plot_data_h_scalar_t += [(Za, h_scalar[1])]
    plot_data_h_scalar_sv += [(Za, h_scalar[2])]
Ra = 1.50000000000000 Za = -1.51000000000000 H_scalar_t = 23393.15305463854
Ra = 1.50000000000000 Za = -1.51000000000000 H_scalar_sv = -23393.153054655162
Ra = 1.50000000000000 Za = -1.51000000000000 H_scalar = -1.6621925169602036e-08
Ra = 1.50000000000000 Za = -1.52000000000000 H_scalar_t = 19343.328861400296
Ra = 1.50000000000000 Za = -1.52000000000000 H_scalar_sv = -19343.328861418566
Ra = 1.50000000000000 Za = -1.52000000000000 H_scalar = -1.8269929569214582e-08
Ra = 1.50000000000000 Za = -1.53000000000000 H_scalar_t = 16974.27329231946
Ra = 1.50000000000000 Za = -1.53000000000000 H_scalar_sv = -16974.273292319693
Ra = 1.50000000000000 Za = -1.53000000000000 H_scalar = -2.3283064365386963e-10
Ra = 1.50000000000000 Za = -1.54000000000000 H_scalar_t = 15293.835792785081
Ra = 1.50000000000000 Za = -1.54000000000000 H_scalar_sv = -15293.835792803959
Ra = 1.50000000000000 Za = -1.54000000000000 H_scalar = -1.88774720299989e-08
Ra = 1.50000000000000 Za = -1.55000000000000 H_scalar_t = 13991.09119444739
Ra = 1.50000000000000 Za = -1.55000000000000 H_scalar_sv = -13991.091194447488
Ra = 1.50000000000000 Za = -1.55000000000000 H_scalar = -9.822542779147625e-11
Ra = 1.50000000000000 Za = -1.60000000000000 H_scalar_t = 9957.285917733787
Ra = 1.50000000000000 Za = -1.60000000000000 H_scalar_sv = -9957.285917733796
Ra = 1.50000000000000 Za = -1.60000000000000 H_scalar = -9.094947017729282e-12
Ra = 1.50000000000000 Za = -1.70000000000000 H_scalar_t = 5998.424962197378
Ra = 1.50000000000000 Za = -1.70000000000000 H_scalar_sv = -5998.42496219738
Ra = 1.50000000000000 Za = -1.70000000000000 H_scalar = -2.7284841053187847e-12
Ra = 1.50000000000000 Za = -1.80000000000000 H_scalar_t = 3797.342218232182
Ra = 1.50000000000000 Za = -1.80000000000000 H_scalar_sv = -3797.3422182321747
Ra = 1.50000000000000 Za = -1.80000000000000 H_scalar = 7.275957614183426e-12
Ra = 1.50000000000000 Za = -1.90000000000000 H_scalar_t = 2354.2803154980365
Ra = 1.50000000000000 Za = -1.90000000000000 H_scalar_sv = -2354.280315498031
Ra = 1.50000000000000 Za = -1.90000000000000 H_scalar = 5.4569682106375694e-12
Ra = 1.50000000000000 Za = -2.00000000000000 H_scalar_t = 1348.2605848223218
Ra = 1.50000000000000 Za = -2.00000000000000 H_scalar_sv = -1348.2605848223227
Ra = 1.50000000000000 Za = -2.00000000000000 H_scalar = -9.094947017729282e-13
Ra = 1.50000000000000 Za = -2.50000000000000 H_scalar_t = -694.1177133435932
Ra = 1.50000000000000 Za = -2.50000000000000 H_scalar_sv = 694.1177133435874
Ra = 1.50000000000000 Za = -2.50000000000000 H_scalar = -5.7980287238024175e-12
Ra = 1.50000000000000 Za = -3.00000000000000 H_scalar_t = -924.3112046966348
Ra = 1.50000000000000 Za = -3.00000000000000 H_scalar_sv = 924.3112046966312
Ra = 1.50000000000000 Za = -3.00000000000000 H_scalar = -3.637978807091713e-12
Ra = 1.50000000000000 Za = -3.50000000000000 H_scalar_t = -766.2190597645495
Ra = 1.50000000000000 Za = -3.50000000000000 H_scalar_sv = 766.2190597645441
Ra = 1.50000000000000 Za = -3.50000000000000 H_scalar = -5.343281372915953e-12
Ra = 1.50000000000000 Za = -4.00000000000000 H_scalar_t = -571.6243771490766
Ra = 1.50000000000000 Za = -4.00000000000000 H_scalar_sv = 571.6243771490768
Ra = 1.50000000000000 Za = -4.00000000000000 H_scalar = 2.2737367544323206e-13
Ra = 1.50000000000000 Za = -4.50000000000000 H_scalar_t = -415.09035067107465
Ra = 1.50000000000000 Za = -4.50000000000000 H_scalar_sv = 415.09035067107493
Ra = 1.50000000000000 Za = -4.50000000000000 H_scalar = 2.8421709430404007e-13
Ra = 1.50000000000000 Za = -5.00000000000000 H_scalar_t = -301.3151715079718
Ra = 1.50000000000000 Za = -5.00000000000000 H_scalar_sv = 301.3151715079649
Ra = 1.50000000000000 Za = -5.00000000000000 H_scalar = -6.87805368215777e-12
Ra = 1.50000000000000 Za = -5.50000000000000 H_scalar_t = -220.91036867992628
Ra = 1.50000000000000 Za = -5.50000000000000 H_scalar_sv = 220.91036867992648
Ra = 1.50000000000000 Za = -5.50000000000000 H_scalar = 1.9895196601282805e-13
Ra = 1.50000000000000 Za = -6.00000000000000 H_scalar_t = -164.21485343795425
Ra = 1.50000000000000 Za = -6.00000000000000 H_scalar_sv = 164.21485343795442
Ra = 1.50000000000000 Za = -6.00000000000000 H_scalar = 1.7053025658242404e-13
Ra = 1.50000000000000 Za = -6.50000000000000 H_scalar_t = -123.90442881085457
Ra = 1.50000000000000 Za = -6.50000000000000 H_scalar_sv = 123.9044288108548
Ra = 1.50000000000000 Za = -6.50000000000000 H_scalar = 2.2737367544323206e-13
Ra = 1.50000000000000 Za = -7.00000000000000 H_scalar_t = -94.87959607398308
Ra = 1.50000000000000 Za = -7.00000000000000 H_scalar_sv = 94.87959607398324
Ra = 1.50000000000000 Za = -7.00000000000000 H_scalar = 1.5631940186722204e-13

Результирующий график scalar магнитного поля $H_{||}$ на расстоянии Ra = 1.5 см от оси цилиндрической системы координат в зависимости от координаты точки наблюдения $Z_a$

In [78]:
list_plot(plot_data_h_scalar).show()
In [79]:
plot_data_h_scalar = []
plot_data_h_scalar_t = []
plot_data_h_scalar_sv = []

Ra = Rj1
for dz in (0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5):
    Za = Zj1 - dz
    h_scalar = calc_H_scalar(Za, Ra)
    plot_data_h_scalar += [(Za, h_scalar[0])]
    plot_data_h_scalar_t += [(Za, h_scalar[1])]
    plot_data_h_scalar_sv += [(Za, h_scalar[2])]
Ra = 0.300000000000000 Za = -1.51000000000000 H_scalar_t = -140590.91087456726
Ra = 0.300000000000000 Za = -1.51000000000000 H_scalar_sv = 140590.91087455442
Ra = 0.300000000000000 Za = -1.51000000000000 H_scalar = -1.2834789231419563e-08
Ra = 0.300000000000000 Za = -1.52000000000000 H_scalar_t = -120339.51293531928
Ra = 0.300000000000000 Za = -1.52000000000000 H_scalar_sv = 120339.51293531954
Ra = 0.300000000000000 Za = -1.52000000000000 H_scalar = 2.6193447411060333e-10
Ra = 0.300000000000000 Za = -1.53000000000000 H_scalar_t = -108479.51623452848
Ra = 0.300000000000000 Za = -1.53000000000000 H_scalar_sv = 108479.51623452845
Ra = 0.300000000000000 Za = -1.53000000000000 H_scalar = -2.9103830456733704e-11
Ra = 0.300000000000000 Za = -1.54000000000000 H_scalar_t = -100051.84420093412
Ra = 0.300000000000000 Za = -1.54000000000000 H_scalar_sv = 100051.84420085265
Ra = 0.300000000000000 Za = -1.54000000000000 H_scalar = -8.1476173363626e-08
Ra = 0.300000000000000 Za = -1.55000000000000 H_scalar_t = -93503.06623950909
Ra = 0.300000000000000 Za = -1.55000000000000 H_scalar_sv = 93503.06623950906
Ra = 0.300000000000000 Za = -1.55000000000000 H_scalar = -2.9103830456733704e-11
Ra = 0.300000000000000 Za = -1.60000000000000 H_scalar_t = -73043.60994694859
Ra = 0.300000000000000 Za = -1.60000000000000 H_scalar_sv = 73043.60994694856
Ra = 0.300000000000000 Za = -1.60000000000000 H_scalar = -2.9103830456733704e-11
Ra = 0.300000000000000 Za = -1.70000000000000 H_scalar_t = -52296.65713115122
Ra = 0.300000000000000 Za = -1.70000000000000 H_scalar_sv = 52296.65713115123
Ra = 0.300000000000000 Za = -1.70000000000000 H_scalar = 7.275957614183426e-12
Ra = 0.300000000000000 Za = -1.80000000000000 H_scalar_t = -40104.98068432401
Ra = 0.300000000000000 Za = -1.80000000000000 H_scalar_sv = 40104.98068432395
Ra = 0.300000000000000 Za = -1.80000000000000 H_scalar = -5.820766091346741e-11
Ra = 0.300000000000000 Za = -1.90000000000000 H_scalar_t = -31643.271364820263
Ra = 0.300000000000000 Za = -1.90000000000000 H_scalar_sv = 31643.271364820273
Ra = 0.300000000000000 Za = -1.90000000000000 H_scalar = 1.0913936421275139e-11
Ra = 0.300000000000000 Za = -2.00000000000000 H_scalar_t = -25384.872413236026
Ra = 0.300000000000000 Za = -2.00000000000000 H_scalar_sv = 25384.872413236037
Ra = 0.300000000000000 Za = -2.00000000000000 H_scalar = 1.0913936421275139e-11
Ra = 0.300000000000000 Za = -2.50000000000000 H_scalar_t = -9761.224585795038
Ra = 0.300000000000000 Za = -2.50000000000000 H_scalar_sv = 9761.22458579503
Ra = 0.300000000000000 Za = -2.50000000000000 H_scalar = -9.094947017729282e-12
Ra = 0.300000000000000 Za = -3.00000000000000 H_scalar_t = -4435.553870466368
Ra = 0.300000000000000 Za = -3.00000000000000 H_scalar_sv = 4435.5538704663695
Ra = 0.300000000000000 Za = -3.00000000000000 H_scalar = 1.8189894035458565e-12
Ra = 0.300000000000000 Za = -3.50000000000000 H_scalar_t = -2273.6483059635284
Ra = 0.300000000000000 Za = -3.50000000000000 H_scalar_sv = 2273.64830596353
Ra = 0.300000000000000 Za = -3.50000000000000 H_scalar = 1.8189894035458565e-12
Ra = 0.300000000000000 Za = -4.00000000000000 H_scalar_t = -1277.7315270950955
Ra = 0.300000000000000 Za = -4.00000000000000 H_scalar_sv = 1277.7315270950976
Ra = 0.300000000000000 Za = -4.00000000000000 H_scalar = 2.0463630789890885e-12
Ra = 0.300000000000000 Za = -4.50000000000000 H_scalar_t = -771.3312907691585
Ra = 0.300000000000000 Za = -4.50000000000000 H_scalar_sv = 771.3312907691593
Ra = 0.300000000000000 Za = -4.50000000000000 H_scalar = 7.958078640513122e-13
Ra = 0.300000000000000 Za = -5.00000000000000 H_scalar_t = -492.7773052449452
Ra = 0.300000000000000 Za = -5.00000000000000 H_scalar_sv = 492.7773052449454
Ra = 0.300000000000000 Za = -5.00000000000000 H_scalar = 2.2737367544323206e-13
Ra = 0.300000000000000 Za = -5.50000000000000 H_scalar_t = -329.51982866897947
Ra = 0.300000000000000 Za = -5.50000000000000 H_scalar_sv = 329.51982866897924
Ra = 0.300000000000000 Za = -5.50000000000000 H_scalar = -2.2737367544323206e-13
Ra = 0.300000000000000 Za = -6.00000000000000 H_scalar_t = -228.74285537998057
Ra = 0.300000000000000 Za = -6.00000000000000 H_scalar_sv = 228.74285537998043
Ra = 0.300000000000000 Za = -6.00000000000000 H_scalar = -1.4210854715202004e-13
Ra = 0.300000000000000 Za = -6.50000000000000 H_scalar_t = -163.80216456717304
Ra = 0.300000000000000 Za = -6.50000000000000 H_scalar_sv = 163.80216456717238
Ra = 0.300000000000000 Za = -6.50000000000000 H_scalar = -6.536993168992922e-13
Ra = 0.300000000000000 Za = -7.00000000000000 H_scalar_t = -120.41652123222676
Ra = 0.300000000000000 Za = -7.00000000000000 H_scalar_sv = 120.4165212322265
Ra = 0.300000000000000 Za = -7.00000000000000 H_scalar = -2.5579538487363607e-13

Результирующий график scalar магнитного поля $H_{||}$ на расстоянии Ra = 0.3 см от оси цилиндрической системы координат в зависимости от координаты точки наблюдения $Z_a$

In [80]:
list_plot(plot_data_h_scalar).show()
In [81]:
plot_data_h_scalar = []
plot_data_h_scalar_t = []
plot_data_h_scalar_sv = []

Ra = (Rj1 + Rj2) / 2
for dz in (0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5):
    Za = Zj1 - dz
    h_scalar = calc_H_scalar(Za, Ra)
    plot_data_h_scalar += [(Za, h_scalar[0])]
    plot_data_h_scalar_t += [(Za, h_scalar[1])]
    plot_data_h_scalar_sv += [(Za, h_scalar[2])]
Ra = 0.900000000000000 Za = -1.51000000000000 H_scalar_t = -10290.142123859236
Ra = 0.900000000000000 Za = -1.51000000000000 H_scalar_sv = 10290.142123861473
Ra = 0.900000000000000 Za = -1.51000000000000 H_scalar = 2.2373569663614035e-09
Ra = 0.900000000000000 Za = -1.52000000000000 H_scalar_t = -10291.844068269143
Ra = 0.900000000000000 Za = -1.52000000000000 H_scalar_sv = 10291.844068269012
Ra = 0.900000000000000 Za = -1.52000000000000 H_scalar = -1.3096723705530167e-10
Ra = 0.900000000000000 Za = -1.53000000000000 H_scalar_t = -10290.762160731967
Ra = 0.900000000000000 Za = -1.53000000000000 H_scalar_sv = 10290.762160732127
Ra = 0.900000000000000 Za = -1.53000000000000 H_scalar = 1.6007106751203537e-10
Ra = 0.900000000000000 Za = -1.54000000000000 H_scalar_t = -10286.909121453182
Ra = 0.900000000000000 Za = -1.54000000000000 H_scalar_sv = 10286.90912145321
Ra = 0.900000000000000 Za = -1.54000000000000 H_scalar = 2.9103830456733704e-11
Ra = 0.900000000000000 Za = -1.55000000000000 H_scalar_t = -10280.302397171814
Ra = 0.900000000000000 Za = -1.55000000000000 H_scalar_sv = 10280.302397171803
Ra = 0.900000000000000 Za = -1.55000000000000 H_scalar = -1.0913936421275139e-11
Ra = 0.900000000000000 Za = -1.60000000000000 H_scalar_t = -10206.891869167124
Ra = 0.900000000000000 Za = -1.60000000000000 H_scalar_sv = 10206.891869167115
Ra = 0.900000000000000 Za = -1.60000000000000 H_scalar = -9.094947017729282e-12
Ra = 0.900000000000000 Za = -1.70000000000000 H_scalar_t = -9875.488579750767
Ra = 0.900000000000000 Za = -1.70000000000000 H_scalar_sv = 9875.488579750758
Ra = 0.900000000000000 Za = -1.70000000000000 H_scalar = -9.094947017729282e-12
Ra = 0.900000000000000 Za = -1.80000000000000 H_scalar_t = -9348.804684524366
Ra = 0.900000000000000 Za = -1.80000000000000 H_scalar_sv = 9348.804684524352
Ra = 0.900000000000000 Za = -1.80000000000000 H_scalar = -1.4551915228366852e-11
Ra = 0.900000000000000 Za = -1.90000000000000 H_scalar_t = -8696.916501490967
Ra = 0.900000000000000 Za = -1.90000000000000 H_scalar_sv = 8696.916501490947
Ra = 0.900000000000000 Za = -1.90000000000000 H_scalar = -2.000888343900442e-11
Ra = 0.900000000000000 Za = -2.00000000000000 H_scalar_t = -7983.845980645433
Ra = 0.900000000000000 Za = -2.00000000000000 H_scalar_sv = 7983.845980645449
Ra = 0.900000000000000 Za = -2.00000000000000 H_scalar = 1.6370904631912708e-11
Ra = 0.900000000000000 Za = -2.50000000000000 H_scalar_t = -4721.610499220341
Ra = 0.900000000000000 Za = -2.50000000000000 H_scalar_sv = 4721.6104992203245
Ra = 0.900000000000000 Za = -2.50000000000000 H_scalar = -1.6370904631912708e-11
Ra = 0.900000000000000 Za = -3.00000000000000 H_scalar_t = -2700.579894730548
Ra = 0.900000000000000 Za = -3.00000000000000 H_scalar_sv = 2700.579894730541
Ra = 0.900000000000000 Za = -3.00000000000000 H_scalar = -6.821210263296962e-12
Ra = 0.900000000000000 Za = -3.50000000000000 H_scalar_t = -1590.4293342620658
Ra = 0.900000000000000 Za = -3.50000000000000 H_scalar_sv = 1590.4293342620663
Ra = 0.900000000000000 Za = -3.50000000000000 H_scalar = 4.547473508864641e-13
Ra = 0.900000000000000 Za = -4.00000000000000 H_scalar_t = -977.47535948767
Ra = 0.900000000000000 Za = -4.00000000000000 H_scalar_sv = 977.4753594876701
Ra = 0.900000000000000 Za = -4.00000000000000 H_scalar = 1.1368683772161603e-13
Ra = 0.900000000000000 Za = -4.50000000000000 H_scalar_t = -626.8809794208939
Ra = 0.900000000000000 Za = -4.50000000000000 H_scalar_sv = 626.8809794208943
Ra = 0.900000000000000 Za = -4.50000000000000 H_scalar = 3.410605131648481e-13
Ra = 0.900000000000000 Za = -5.00000000000000 H_scalar_t = -417.87546885414463
Ra = 0.900000000000000 Za = -5.00000000000000 H_scalar_sv = 417.87546885414497
Ra = 0.900000000000000 Za = -5.00000000000000 H_scalar = 3.410605131648481e-13
Ra = 0.900000000000000 Za = -5.50000000000000 H_scalar_t = -288.17831710331376
Ra = 0.900000000000000 Za = -5.50000000000000 H_scalar_sv = 288.1783171033141
Ra = 0.900000000000000 Za = -5.50000000000000 H_scalar = 3.410605131648481e-13
Ra = 0.900000000000000 Za = -6.00000000000000 H_scalar_t = -204.6963090707695
Ra = 0.900000000000000 Za = -6.00000000000000 H_scalar_sv = 204.6963090707698
Ra = 0.900000000000000 Za = -6.00000000000000 H_scalar = 2.8421709430404007e-13
Ra = 0.900000000000000 Za = -6.50000000000000 H_scalar_t = -149.18007933018853
Ra = 0.900000000000000 Za = -6.50000000000000 H_scalar_sv = 149.18007933018873
Ra = 0.900000000000000 Za = -6.50000000000000 H_scalar = 1.9895196601282805e-13
Ra = 0.900000000000000 Za = -7.00000000000000 H_scalar_t = -111.18112427578163
Ra = 0.900000000000000 Za = -7.00000000000000 H_scalar_sv = 111.18112427578174
Ra = 0.900000000000000 Za = -7.00000000000000 H_scalar = 1.1368683772161603e-13

Результирующий график scalar магнитного поля $H_{||}$ на расстоянии Ra = 0.9 см от оси цилиндрической системы координат в зависимости от координаты точки наблюдения $Z_a$

In [82]:
list_plot(plot_data_h_scalar).show()

Определяем функцию расчёта поперечной силы Лоренца (компонента $z$), действующей на торец другого цилиндра с координатой $Z_a$ удельная плотность силы Лоренца $$f=\frac{1}{c}[j \times H]$$ поскольку в образовании результирующей силы участвуют только торцевые токи, берём поверхностный интеграл по площади поверхности торца $$F=\frac{1}{c}\int\limits_{S_a}[j_t \times H]\,d{S_a}$$ в цилиндрической системе координат интеграл по площади торца $$F=\frac{1}{c}\int\limits_{r_{a1}}^{r_{a2}}\int\limits_{0}^{2\pi}[j_t \times H]\,r_a\,d{\varphi_a}\,d{r_a}$$ упрощая $$F=\frac{2\pi}{c}\int\limits_{r_{a1}}^{r_{a2}}\,j_t\, H_{\varphi}\,r_a\,d{r_a}$$

где компонента $\varphi$ векторного магнитного поля $H_{\varphi} = \left(rot\,\vec{A}\right)_{\varphi}$

$H_{\varphi} = \frac{\partial}{\partial z_a}A_T - \frac{\partial}{\partial r_a}(A_S+A_V)$

Раскладывая выражение для магнитного поля на слагаемые можно вычислить три компоненты силы Лоренца

$$F_T =\frac{2\pi}{c}\int\limits_{r_{a1}}^{r_{a2}}\,j_t\, \left(\frac{\partial}{\partial z_a}A_T\right)\,r_a\,d{r_a}$$$$F_S=\frac{2\pi}{c}\int\limits_{r_{a1}}^{r_{a2}}\,j_t\, \left(- \frac{\partial}{\partial r_a}A_S\right)\,r_a\,d{r_a}$$$$F_V=\frac{2\pi}{c}\int\limits_{r_{a1}}^{r_{a2}}\,j_t\, \left(- \frac{\partial}{\partial r_a}A_V\right)\,r_a\,d{r_a}$$

Исходя из извесной формулы векторного анализа

$$[\vec{j} \times rot\,\vec{A}] = \nabla\left(\vec{j}\cdot\vec{A}\right) - \left(\vec{j},\nabla\right)\vec{A}$$

легко понять что:

компонента силы Лоренца $F_T$ носит потенциальный характер

а компоненты силы Лоренца $F_S$ и $F_V$ носят конвективный характер

In [83]:
def calc_F_lorenz(Za, Ra1, Ra2):
    At_diff_za_subs_zj_za = lambda rj, ra : At_diff_za_subs_zj(rj, ra, Za)
    As_diff_ra_subs_rj_za = lambda ra, zj : As_diff_ra_subs_rj(ra, zj, Za)
    Av_diff_ra_subs_rj_za = lambda ra, zj : Av_diff_ra_subs_rj(ra, zj, Za)

    jt_c(r) = (jt(J, kappa, r)/c).substitute(J == J_d, kappa == kappa_d, c == c_d)

    At_diff_za_num_int_ra = lambda Rj : num_int(lambda ra : (2*pi*jt_c(ra)*ra*At_diff_za_subs_zj_za(Rj, ra)), Ra1, Ra2)
    At_diff_za_num_int_ra_int_rj = num_int(lambda rj : At_diff_za_num_int_ra(rj), Rj1, Rj2)

    As_diff_ra_num_int_ra = lambda Zj : num_int(lambda ra : (2*pi*jt_c(ra)*ra*(As_diff_ra_subs_rj_za(ra, Zj) ) ), Ra1, Ra2)
    As_diff_ra_num_int_ra_int_zj = num_int(lambda zj : As_diff_ra_num_int_ra(zj), Zj1, Zj2)

    Av_diff_ra_num_int_ra = lambda Zj : num_int(lambda ra : (2*pi*jt_c(ra)*ra*(Av_diff_ra_subs_rj_za(ra, Zj) ) ), Ra1, Ra2)
    Av_diff_ra_num_int_ra_int_zj = num_int(lambda zj : Av_diff_ra_num_int_ra(zj), Zj1, Zj2)

    F_z_t = At_diff_za_num_int_ra_int_rj
    F_z_s = - As_diff_ra_num_int_ra_int_zj
    F_z_v = - Av_diff_ra_num_int_ra_int_zj

    F_z = F_z_t + F_z_s + F_z_v

    print ("Ra1 =", Ra1, "Ra2 =", Ra2, "Za =", Za, "F_z_t  =", F_z_t)
    print ("Ra1 =", Ra1, "Ra2 =", Ra2, "Za =", Za, "F_z_s  =", F_z_s)
    print ("Ra1 =", Ra1, "Ra2 =", Ra2, "Za =", Za, "F_z_v  =", F_z_v)
    print ("Ra1 =", Ra1, "Ra2 =", Ra2, "Za =", Za, "F_z    =", F_z)

    return (F_z, F_z_t, F_z_s, F_z_v)

Определяем функцию расчёта поперечной Лоренца (компонента $z$), действующей на левый цилиндр исходя из величины зазора $dz$

In [84]:
def calc_F_lorenz_cylinder(dz):
    # расчет силы Лоренца, действующей на ближайжий (правый) торец пробного цилиндра расположенного левее на расстоянии
    Za = Zj1 - dz
    F_lorenz_left_cylinder_right_t = calc_F_lorenz(Za, Ra1, Ra2)
    print ("Za = ", Za, "F_lorenz_left_cylinder_right_t = ", F_lorenz_left_cylinder_right_t)

    # расчет силы Лоренца, действующей на удалённый (левый) торец пробного цилиндра расположенного левее на расстоянии
    Za = Zj1 - DZ - dz
    F_lorenz_left_cylinder_left_t = calc_F_lorenz(Za, Ra1, Ra2)
    print ("Za = ", Za, "F_lorenz_left_cylinder_left_t =", F_lorenz_left_cylinder_left_t)

    # учитывая отрицательное направление торцевого тока в правом торце и положительное направление торцевого тока в левом торце
    # находим суммарную силу Лоренца действующую на левый цилиндр
    F_lorenz_cylinder = - F_lorenz_left_cylinder_right_t[0] + F_lorenz_left_cylinder_left_t[0]
    print ("dz = ", dz, "F_lorenz_cylinder = ", F_lorenz_cylinder)

    F_lorenz_cylinder_potential = - F_lorenz_left_cylinder_right_t[1] + F_lorenz_left_cylinder_left_t[1]
    print ("dz = ", dz, "F_lorenz_cylinder_potential = ", F_lorenz_cylinder_potential)

    F_lorenz_cylinder_convective = - F_lorenz_left_cylinder_right_t[2] + F_lorenz_left_cylinder_left_t[2] \
                                   - F_lorenz_left_cylinder_right_t[3] + F_lorenz_left_cylinder_left_t[3]
    print ("dz = ", dz, "F_lorenz_cylinder_convective = ", F_lorenz_cylinder_convective)

    return (F_lorenz_cylinder, F_lorenz_cylinder_potential, F_lorenz_cylinder_convective)

Определяем функцию расчёта силы Николаева (компонента $z$), действующей на поверхность другого цилиндра с координатой $R_a$ удельная плотность силы Николаева $$f=\frac{1}{c}\left(j \, H_{||}\right)$$

поскольку в образовании результирующей силы участвуют surface токи, берём поверхностный интеграл по площади поверхности surface $$F=\frac{1}{c}\int\limits_{S_a}\left(j \, H_{||}\right)\,d{S_a}$$ в цилиндрической системе координат интеграл по площади surface $$F=\frac{1}{c}\int\limits_{z_{a1}}^{z_{a2}}\int\limits_{0}^{2\pi}\left(j \, H_{||}\right)\,R_a\,d{\varphi_a}\,d{z_a}$$ упрощая $$F=\frac{2\pi\,R_a}{c}\int\limits_{z_{a1}}^{z_{a2}}\,j_s\, H_{||}\,d{z_a}$$

где скалярное магнитное поле $H_{||} = -\,div\,\vec{A}$

$H_{||}=-\frac{1}{r_a}\frac{\partial}{\partial r_a}\left(r_a\,A_T\right) - \frac{\partial}{\partial z_a}(A_S+A_V)$

Раскладывая выражение для скалярного магнитного поля на слагаемые можно вычислить три компоненты силы Николаева

$$F_T=\frac{2\pi\,R_a}{c}\int\limits_{z_{a1}}^{z_{a2}}\,j_s\, \left(-\frac{1}{r_a}\frac{\partial}{\partial r_a}\left(r_a\,A_T\right)\right)\,d{z_a}$$$$F_S=\frac{2\pi\,R_a}{c}\int\limits_{z_{a1}}^{z_{a2}}\,j_s\, \left(-\frac{\partial}{\partial z_a}A_S\right)\,d{z_a}$$$$F_V=\frac{2\pi\,R_a}{c}\int\limits_{z_{a1}}^{z_{a2}}\,j_s\, \left(-\frac{\partial}{\partial z_a}A_V\right)\,d{z_a}$$

Анализируя выражения для $F_S$ и $F_V$ можно заметить что они суть градиент потенциальной функции (50.8) взаимодействия токов согласно Тамм, Основы теории электричества, 1957, параграф 51 "Пондемоторное взаимодействие токов", с единственным отличием полученных здесь формул Николаева от формул Тамма - знак

Таким образом компоненты силы Николаева $F_S$ и $F_V$ носят потенциальный характер.

Анализируя выражения для $F_T$ можно заметить что по своему физическому смыслу она похожа на приложенную к рельсам продольную силу "отдачи рельсотрона" http://liquidcrystalosmos.narod.ru/railgun.htm существование которой отвергается в теории классической электродинамики

Таким образом компонента силы Николаева $F_T$ носит конвективный характер и её существование под сомнением

In [85]:
def calc_F_nikolaev_int_on_surf(Ra, Za1, Za2):
    # integration on surface of the left cylinder
    At_ra_diff_ra_div_ra_subs_zj_ra = lambda rj, za : At_ra_diff_ra_div_ra_subs_zj(rj, Ra, za)
    As_diff_za_subs_rj_ra = lambda zj, za : As_diff_za_subs_rj(Ra, zj, za)
    Av_diff_za_subs_rj_ra = lambda zj, za : Av_diff_za_subs_rj(Ra, zj, za)
    
    js_c(r) = (js(J, kappa, r)/c).substitute(J == J_d, kappa == kappa_d, c == c_d)

    At_diff_ra_num_int_za = lambda Rj : num_int(lambda za : (2*pi*js_c(Ra)*Ra*At_ra_diff_ra_div_ra_subs_zj_ra(Rj, za)), Za1, Za2)
    At_diff_ra_num_int_za_int_rj = num_int(lambda rj : At_diff_ra_num_int_za(rj), Rj1, Rj2)

    As_diff_za_num_int_za = lambda Zj : num_int(lambda za : (2*pi*js_c(Ra)*Ra*(As_diff_za_subs_rj_ra(Zj, za) ) ), Za1, Za2)
    As_diff_za_num_int_za_int_zj = num_int(lambda zj : As_diff_za_num_int_za(zj), Zj1, Zj2)

    Av_diff_za_num_int_za = lambda Zj : num_int(lambda za : (2*pi*js_c(Ra)*Ra*(Av_diff_za_subs_rj_ra(Zj, za) ) ), Za1, Za2)
    Av_diff_za_num_int_za_int_zj = num_int(lambda zj : Av_diff_za_num_int_za(zj), Zj1, Zj2)

    F_z_t = - At_diff_ra_num_int_za_int_rj
    F_z_s = - As_diff_za_num_int_za_int_zj
    F_z_v = - Av_diff_za_num_int_za_int_zj

    F_z = F_z_t + F_z_s + F_z_v

    print ("Za1 =", Za1, "Za2 =", Za2, "Ra =", Ra, "F_z_t  =", F_z_t)
    print ("Za1 =", Za1, "Za2 =", Za2, "Ra =", Ra, "F_z_s  =", F_z_s)
    print ("Za1 =", Za1, "Za2 =", Za2, "Ra =", Ra, "F_z_v  =", F_z_v)
    print ("Za1 =", Za1, "Za2 =", Za2, "Ra =", Ra, "F_z    =", F_z)

    return (F_z, F_z_t, F_z_s, F_z_v)

Определяем функцию расчёта силы Николаева (компонента $z$), действующей на volume другого цилиндра удельная плотность силы Николаева $$f=\frac{1}{c}\left(j \, H_{||}\right)$$

в образовании результирующей силы участвуют volume токи, берём volume интеграл $$F=\frac{1}{c}\int\limits_{V_a}\left(j_v \, H_{||}\right)\,d{V_a}$$ в цилиндрической системе координат интеграл по volume $$F=\frac{1}{c}\int\limits_{r_{a1}}^{r_{a2}}\int\limits_{z_{a1}}^{z_{a2}}\int\limits_{0}^{2\pi}\left(j_v \, H_{||}\right)\,r_a\,d{\varphi_a}\,d{z_a}\,d{r_a}$$ упрощая $$F=\frac{2\pi}{c}\int\limits_{r_{a1}}^{r_{a2}}\int\limits_{z_{a1}}^{z_{a2}}\,j_v\, H_{||}\,r_a\,d{z_a}\,d{r_a}$$

где скалярное магнитное поле $H_{||} = -\,div\,\vec{A}$

$H_{||}=-\frac{1}{r_a}\frac{\partial}{\partial r_a}\left(r_a\,A_T\right) - \frac{\partial}{\partial z_a}(A_S+A_V)$

In [86]:
def calc_F_nikolaev_int_on_volume(Ra1, Ra2, Za1, Za2):
    # integration on volume of the left cylinder

    jv_c(r) = (jv(r)/c).substitute(J == J_d, kappa == kappa_d, c == c_d)

    At_diff_ra_num_int_za = lambda rj, ra : num_int(lambda za : (2*pi*jv_c(ra)*ra*At_ra_diff_ra_div_ra_subs_zj(rj, ra, za)), Za1, Za2)
    At_diff_ra_num_int_za_int_ra = lambda rj : num_int(lambda ra : At_diff_ra_num_int_za(rj, ra), Ra1, Ra2)
    At_diff_ra_num_int_za_int_ra_int_rj = num_int(lambda rj : At_diff_ra_num_int_za_int_ra(rj), Rj1, Rj2)

    As_diff_za_num_int_za = lambda ra, zj : num_int(lambda za : (2*pi*jv_c(ra)*ra*(As_diff_za_subs_rj(ra, zj, za) ) ), Za1, Za2)
    As_diff_za_num_int_za_int_ra = lambda zj : num_int(lambda ra : As_diff_za_num_int_za(ra, zj), Ra1, Ra2)
    As_diff_za_num_int_za_int_ra_int_zj = num_int(lambda zj : As_diff_za_num_int_za_int_ra(zj), Zj1, Zj2)

    Av_diff_za_num_int_za = lambda ra, zj : num_int(lambda za : (2*pi*jv_c(ra)*ra*(Av_diff_za_subs_rj(ra, zj, za) ) ), Za1, Za2)
    Av_diff_za_num_int_za_int_ra = lambda zj : num_int(lambda ra : Av_diff_za_num_int_za(ra, zj), Ra1, Ra2)
    Av_diff_za_num_int_za_int_ra_int_zj = num_int(lambda zj : Av_diff_za_num_int_za_int_ra(zj), Zj1, Zj2)

    F_z_t = - At_diff_ra_num_int_za_int_ra_int_rj
    F_z_s = - As_diff_za_num_int_za_int_ra_int_zj
    F_z_v = - Av_diff_za_num_int_za_int_ra_int_zj

    F_z = F_z_t + F_z_s + F_z_v

    print ("Za1 =", Za1, "Za2 =", Za2, "Ra1 =", Ra1, "Ra2 =", Ra2, "F_z_t  =", F_z_t)
    print ("Za1 =", Za1, "Za2 =", Za2, "Ra1 =", Ra1, "Ra2 =", Ra2, "F_z_s  =", F_z_s)
    print ("Za1 =", Za1, "Za2 =", Za2, "Ra1 =", Ra1, "Ra2 =", Ra2, "F_z_v  =", F_z_v)
    print ("Za1 =", Za1, "Za2 =", Za2, "Ra1 =", Ra1, "Ra2 =", Ra2, "F_z    =", F_z)

    return (F_z, F_z_t, F_z_s, F_z_v)

Определяем функцию расчёта силы Николаева (компонента $z$), действующей на левый цилиндр исходя из величины зазора $dz$

In [87]:
def calc_F_nikolaev_cylinder(dz):
    # расчет силы Николаева, действующей на inner surface пробного цилиндра расположенного левее на расстоянии
    Za1 = Zj1 - dz - DZ
    Za2 = Zj1 - dz
    Ra = Rj1
    F_nikolaev_left_cylinder_inner_surf = calc_F_nikolaev_int_on_surf(Ra, Za1, Za2)
    print ("Ra = ", Ra, "F_nikolaev_left_cylinder_inner_surf = ", F_nikolaev_left_cylinder_inner_surf)

    # расчет силы Николаева, действующей на outer surface пробного цилиндра расположенного левее на расстоянии
    Ra =  Rj2
    F_nikolaev_left_cylinder_outer_surf = calc_F_nikolaev_int_on_surf(Ra, Za1, Za2)
    print ("Ra = ", Ra, "F_nikolaev_left_cylinder_outer_surf =", F_nikolaev_left_cylinder_outer_surf)

    # расчет силы Николаева, действующей на volume пробного цилиндра расположенного левее на расстоянии
    Ra1 = Rj1
    Ra2 = Rj2
    F_nikolaev_left_cylinder_volume = calc_F_nikolaev_int_on_volume(Ra1, Ra2, Za1, Za2)
    print ("Ra = ", Ra, "F_nikolaev_left_cylinder_volume =", F_nikolaev_left_cylinder_volume)
    
    # учитывая что отрицательное направление объемного тока уже учтено в jv(r) = - c * I0 / r
    # учитывая отрицательное направление поверхностного тока на внутренней поверхности (inner surface)
    # и положительное направление поверхностного тока на внешней поверхности (outer surface)
    # находим суммарную силу Николаева действующую на левый цилиндр
    F_nikolaev_cylinder = F_nikolaev_left_cylinder_volume[0] - F_nikolaev_left_cylinder_inner_surf[0] + F_nikolaev_left_cylinder_outer_surf[0]
    print ("dz = ", dz, "F_nikolaev_cylinder = ", F_nikolaev_cylinder)

    F_nikolaev_cylinder_convective = F_nikolaev_left_cylinder_volume[1] - F_nikolaev_left_cylinder_inner_surf[1] + F_nikolaev_left_cylinder_outer_surf[1]
    print ("dz = ", dz, "F_nikolaev_cylinder_convective = ", F_nikolaev_cylinder_convective)
    
    F_nikolaev_cylinder_potential = F_nikolaev_left_cylinder_volume[2] - F_nikolaev_left_cylinder_inner_surf[2] + F_nikolaev_left_cylinder_outer_surf[2] \
                                  + F_nikolaev_left_cylinder_volume[3] - F_nikolaev_left_cylinder_inner_surf[3] + F_nikolaev_left_cylinder_outer_surf[3]
    print ("dz = ", dz, "F_nikolaev_cylinder_potential = ", F_nikolaev_cylinder_potential)


    return (F_nikolaev_cylinder, F_nikolaev_cylinder_convective, F_nikolaev_cylinder_potential)

Запуск расчёта силы Лоренца и величины векторного магнитного поля для заданного набора значений зазора между цилиндрами

plot_data_f_lorenz = [] plot_data_f_lorenz_potential_t = [] plot_data_f_lorenz_convective_sv = [] plot_data_f_nikolaev = [] plot_data_f_nikolaev_convective_t = [] plot_data_f_nikolaev_potential_sv = [] plot_data_f_sum = [] #plot_data_f_sum = [] #plot_data_f_sum = [] plot_data_h = [] plot_data_h_t = [] plot_data_h_sv = [] plot_data_s = [] plot_data_s_t = [] plot_data_s_sv = [] Ra = (Rj1 + Rj2) / 2 for dz in (0.01, 0.02):#, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 1.5, 2.0): Za = Zj1 - dz h = calc_H_phi(Za, Ra) s = calc_H_scalar(Za, Ra) f_nikolaev = calc_F_nikolaev_cylinder(dz) f_lorenz = calc_F_lorenz_cylinder(dz) plot_data_h += [(Za, h[0])] plot_data_h_t += [(Za, h[1])] plot_data_h_sv += [(Za, h[2])] plot_data_s += [(Za, s[0])] plot_data_s_t += [(Za, s[1])] plot_data_s_sv += [(Za, s[2])] plot_data_f_lorenz += [(Za, f_lorenz[0])] plot_data_f_lorenz_potential_t += [(Za, f_lorenz[1])] plot_data_f_lorenz_convective_sv += [(Za, f_lorenz[2])] plot_data_f_nikolaev += [(Za, f_nikolaev[0])] plot_data_f_nikolaev_convective_t += [(Za, f_nikolaev[1])] plot_data_f_nikolaev_potential_sv += [(Za, f_nikolaev[2])] plot_data_f_sum += [(Za, f_lorenz + f_nikolaev)] #plot_data_f_sum += [(Za, f_lorenz + f_nikolaev)] #plot_data_f_sum += [(Za, f_lorenz + f_nikolaev)] Ra = (Rj1 + Rj2) / 2 Za = 0 h = calc_H_phi(Za, Ra)dr = 0.01 dz = 0.04 Za = 0 for Ra in(Rj1 - dr, Rj1 + dr, (Rj1 + Rj2)/2, Rj2 - dr, Rj2 + dr, 2 * Rj2, 10 * Rj2): h = calc_H_phi( Za, Ra)

Результирующий график силы Лоренца приложенной к левому цилиндру в зависимости от координаты правого торца левого цилиндра в сантиметрах. Сила в динах (ибо все расчеты здесь произведены в системе гаусса).

list_plot(plot_data_f_lorenz).show()list_plot(plot_data_f_lorenz_potential_t).show()list_plot(plot_data_f_lorenz_convective_sv).show()

Результирующий график силы Николаева приложенной к левому цилиндру в зависимости от координаты правого торца левого цилиндра

list_plot(plot_data_f_nikolaev).show()list_plot(plot_data_f_nikolaev_convective_t).show()list_plot(plot_data_f_nikolaev_potential_sv).show()plot_data_f_lorenz_nikolaev_potential = [] for i in range(len(plot_data_f_lorenz_potential_t)): (Za, f_lorenz_potential_t) = plot_data_f_lorenz_potential_t[i] (Za, f_nikolaev_potential_sv) = plot_data_f_nikolaev_potential_sv[i] plot_data_f_lorenz_nikolaev_potential += [(Za, f_lorenz_potential_t - f_nikolaev_potential_sv)] list_plot(plot_data_f_lorenz_nikolaev_potential).show()

Результирующий график силы Николаева + силы Лоренца приложенной к левому цилиндру в зависимости от координаты правого торца левого цилиндра

In [88]:
#list_plot(plot_data_f_sum).show()

Результаты расчёта силы притяжения между тороидально намагниченными цилиндрами в зависимости от зазора позволяют сделать вывод о том, что поперечная сила Ампера-Лоренца при величине зазора меньше определённого предела работает на притяжение цилиндров, которое собственно и зафиксировано в опыте.

численные значения силы Ампера-Лоренца:

$dz\,=\,0.1\,мм\,F_{lorenz}\,=\,131798157\,дин\,=\,13.18\,Ньютон$

$dz\,=\,0.2\,мм\,F_{lorenz}\,=\,121534907\,дин\,=\,12.15\,Ньютон$

$dz\,=\,1.0\,мм\,F_{lorenz}\,=\,\,\,50568342\,дин\,=\,\,5.05\,Ньютон$

$dz\,=\,2.0\,мм\,F_{lorenz}\,=-15795654\,дин\,=-1.58\,Ньютон$

При сравнении полученных значений с экспериментом весьма существенно понимать, что численное значение вычисленной силы квадратично зависит от величины магнитной восприимчивости.

Более того последняя зависит также от величины напряженности магнитного поля прямого провода с током (Кривая Столетова). Данное обстоятельство, вообще говоря, приведёт к зависимости намагниченности от радиуса иного вида, чем в рассматриваемой здесь модели (обратная пропорциональность намагниченности от радиуса).

При величине зазора больше определённого предела (2-3 мм) поперечная сила Ампера-Лоренца работает на отталкивание цилиндров. Этот предел расстояния на котором происходит изменение знака силы Лоренца зависит от вида зависимости намагниченности от радиуса.

Изменение знака силы взаимодействия цилиндров в опыте Дейны зафиксировано не было, ввиду того, что при планировании эксперимента вопрос о зависимости направления силы взаимодействия от зазора между цилиндрами не ставился. Кроме того в предоставленном С.А.Дейной видео отсутствуют доказательства того, что знак направления силы взаимодействия цилиндров не зависит от расстояния, и потому не следует считать доказанным существование силы Николаева на основании данного видео материала.

На взгляд автора для дальнейших исследований необходима следующая постановка эксперимента: установить зазор между цилиндрами более 3 мм. И показать направление силы их взаимодействия: притягивание или отталкивание.

Таким образом в данной работе показано, что для доказательства существования продольной силы Николаева с помощью опыта Дейны (опыт Николаева 31) совершенно недостаточно установления факта притяжения цилиндров при зазоре между их торцами менее 3 мм. Для выяснения этого вопроса необходимы дальнейшие экспериментальные и теоретические исследования.

В частности необходимо исследование вида зависимости намагниченности от радиуса.

К вопросу о теореме циркуляции магнитного поля в плоскости вне материала тороидально намагниченного цилиндра

Результирующий график векторного магнитного поля $H$ (компонента $\varphi$) на расстоянии Ra = 0.9 см от оси цилиндрической системы координат в зависимости от координаты точки наблюдения $Z_a$

list_plot(plot_data_h).show()

Может показаться, что полученные в данной работе результаты о налиции угловой компоненты векторного магнитного поля за пределами материала тороидально намагниченного цилиндра противоречат теореме о циркуляции магнитного поля.

$\oint {\vec B}\cdot {\vec {dl}}={\frac {4\pi }{c}}\int {\vec j}\cdot {\vec {ds}}$

Действительно, циркуляция магнитного поля взятая по окружности отстоящей на некотором расстоянии от торца тороидально намагниченного цилиндра отлична от нуля, в то время как молекулярные токи намагниченности не пересекают плоскость, натянутую на эту окружность.

Это кажущееся противоречие разрешается тем, что данную плоскость пересекают токи смещения продуцированные молекулярными токами намагниченности цилиндра.

Исходя из определения ротора в цилиндрических координатах и того факта что в данной конфигурации отлична от нуля только $H_{\varphi}$ компонента магнитного поля для ротора $H$ будут отличными от нуля следующие две компоненты

$rot\,H_r = -\frac{\partial}{\partial z_a}H_{\varphi}$

$rot\,H_z = \frac{1}{r_a}\frac{\partial}{\partial r_a}(r_a\,H_{\varphi})$

где

$H_{\varphi}=\frac{\partial}{\partial z_a}A_T - \frac{\partial}{\partial r_a}(A_S+A_V)$

Итак,

$rot\,H_r = -\frac{\partial}{\partial z_a}\frac{\partial}{\partial z_a}A_T+\frac{\partial}{\partial z_a}\frac{\partial}{\partial r_a}(A_S+A_V)$

$rot\,H_z = \frac{1}{r_a}\frac{\partial}{\partial r_a}(r_a\,\frac{\partial}{\partial z_a}A_T)-\frac{1}{r_a}\frac{\partial}{\partial r_a}(r_a\,\frac{\partial}{\partial r_a}(A_S+A_V))$

In [89]:
At2_diff_za_mult_ra_diff_ra_div_ra = lambda J, c, kappa, rj, ra, zj1, zj2, za, phi_j : (1/ra)*(ra*At2_diff_za (J, c, kappa, rj, ra, zj1, zj2, za, phi_j)).diff(ra)
print(At2_diff_za_mult_ra_diff_ra_div_ra (J, c, kappa, rj, ra, zj1, zj2, za, phi_j))
-2*(3*((rj*cos(phi_j) - ra)*J*kappa*(za - zj1)*cos(phi_j)/((-2*ra*rj*cos(phi_j) + ra^2 + rj^2 + (za - zj1)^2)^(5/2)*c) - (rj*cos(phi_j) - ra)*J*kappa*(za - zj2)*cos(phi_j)/((-2*ra*rj*cos(phi_j) + ra^2 + rj^2 + (za - zj2)^2)^(5/2)*c))*ra + J*kappa*(za - zj1)*cos(phi_j)/((-2*ra*rj*cos(phi_j) + ra^2 + rj^2 + (za - zj1)^2)^(3/2)*c) - J*kappa*(za - zj2)*cos(phi_j)/((-2*ra*rj*cos(phi_j) + ra^2 + rj^2 + (za - zj2)^2)^(3/2)*c))/ra
In [90]:
As2_diff_ra_mult_ra_diff_ra_div_ra = lambda J, c, kappa, rj1, rj2, ra, zj, za, phi_j : (1/ra)*(ra*As2_diff_ra (J, c, kappa, rj1, rj2, ra, zj, za, phi_j)).diff(ra)
print (As2_diff_ra_mult_ra_diff_ra_div_ra (J, c, kappa, rj1, rj2, ra, zj, za, phi_j))
-2*(ra*(3*(rj1*cos(phi_j) - ra)^2*J*kappa/((-2*ra*rj1*cos(phi_j) + ra^2 + rj1^2 + (za - zj)^2)^(5/2)*c) - 3*(rj2*cos(phi_j) - ra)^2*J*kappa/((-2*ra*rj2*cos(phi_j) + ra^2 + rj2^2 + (za - zj)^2)^(5/2)*c) - J*kappa/((-2*ra*rj1*cos(phi_j) + ra^2 + rj1^2 + (za - zj)^2)^(3/2)*c) + J*kappa/((-2*ra*rj2*cos(phi_j) + ra^2 + rj2^2 + (za - zj)^2)^(3/2)*c)) + (rj1*cos(phi_j) - ra)*J*kappa/((-2*ra*rj1*cos(phi_j) + ra^2 + rj1^2 + (za - zj)^2)^(3/2)*c) - (rj2*cos(phi_j) - ra)*J*kappa/((-2*ra*rj2*cos(phi_j) + ra^2 + rj2^2 + (za - zj)^2)^(3/2)*c))/ra
In [91]:
exec(preparse("At_diff_za_mult_ra_diff_ra_div_ra_subs_zj = lambda rj, ra, za, phi_j : " + str(At2_diff_za_mult_ra_diff_ra_div_ra (J_d, c_d, kappa_d, rj, ra, Zj1, Zj2, za, phi_j))))
print (At_diff_za_mult_ra_diff_ra_div_ra_subs_zj (rj, ra, za, phi_j))
-2062500000000/149896229*(3*ra*((rj*cos(phi_j) - ra)*(za + 1.50000000000000)*cos(phi_j)/(pi*(-2*ra*rj*cos(phi_j) + ra^2 + rj^2 + (za + 1.50000000000000)^2)^(5/2)) - (rj*cos(phi_j) - ra)*(za - 1.50000000000000)*cos(phi_j)/(pi*(-2*ra*rj*cos(phi_j) + ra^2 + rj^2 + (za - 1.50000000000000)^2)^(5/2))) + (za + 1.50000000000000)*cos(phi_j)/(pi*(-2*ra*rj*cos(phi_j) + ra^2 + rj^2 + (za + 1.50000000000000)^2)^(3/2)) - (za - 1.50000000000000)*cos(phi_j)/(pi*(-2*ra*rj*cos(phi_j) + ra^2 + rj^2 + (za - 1.50000000000000)^2)^(3/2)))/ra
In [92]:
exec(preparse("As_diff_ra_mult_ra_diff_ra_div_ra_subs_rj = lambda ra, zj, za, phi_j : " + str(As2_diff_ra_mult_ra_diff_ra_div_ra (J_d, c_d, kappa_d, Rj1, Rj2, ra, zj, za, phi_j))))
print (As_diff_ra_mult_ra_diff_ra_div_ra_subs_rj (ra, zj, za, phi_j))
-11/2398339664*(3*ra*((1500000000000*ra - 4.50000000000000e11*cos(phi_j))*(2*ra - 0.600000000000000*cos(phi_j))/(pi*(ra^2 + (za - zj)^2 - 0.600000000000000*ra*cos(phi_j) + 0.0900000000000000)^(5/2)) - (1500000000000*ra - 2.25000000000000e12*cos(phi_j))*(2*ra - 3.00000000000000*cos(phi_j))/(pi*(ra^2 + (za - zj)^2 - 3.00000000000000*ra*cos(phi_j) + 2.25000000000000)^(5/2)) - 1000000000000/(pi*(ra^2 + (za - zj)^2 - 0.600000000000000*ra*cos(phi_j) + 0.0900000000000000)^(3/2)) + 1000000000000/(pi*(ra^2 + (za - zj)^2 - 3.00000000000000*ra*cos(phi_j) + 2.25000000000000)^(3/2))) - (3000000000000*ra - 9.00000000000000e11*cos(phi_j))/(pi*(ra^2 + (za - zj)^2 - 0.600000000000000*ra*cos(phi_j) + 0.0900000000000000)^(3/2)) + (3000000000000*ra - 4.50000000000000e12*cos(phi_j))/(pi*(ra^2 + (za - zj)^2 - 3.00000000000000*ra*cos(phi_j) + 2.25000000000000)^(3/2)))/ra
In [93]:
exec(preparse("Av_diff_ra_mult_ra_diff_ra_div_ra = lambda J, c, kappa, rj, ra, zj, za, phi_j : " + str((1/ra)*(ra*Av_diff_ra(J, c, kappa, rj, ra, zj, za, phi_j)).diff(ra))))
print (Av_diff_ra_mult_ra_diff_ra_div_ra (J, c, kappa, rj, ra, zj, za, phi_j))
0
In [94]:
AV_diff_ra_mult_ra_diff_ra_div_ra = lambda J, c, kappa, rj1, rj2, ra, zj, za, phi_j : num_int(lambda rj : Av_diff_ra_mult_ra_diff_ra_div_ra(J, c, kappa, rj, ra, zj, za, phi_j), rj1, rj2)
In [95]:
Av_diff_ra_mult_ra_diff_ra_div_ra_subs_rj = lambda ra, zj, za, phi_j : AV_diff_ra_mult_ra_diff_ra_div_ra (J_d, c_d, kappa_d, Rj1, Rj2, ra, zj, za, phi_j)
print (Av_diff_ra_mult_ra_diff_ra_div_ra_subs_rj(ra, zj, za, phi_j))
0.0
In [96]:
def calc_rot_H_z(Za, Ra):
    #At_diff_za_mult_ra_diff_ra_div_ra_subs_zj_subs_za_ra = lambda rj : At_diff_za_mult_ra_diff_ra_div_ra_subs_zj(rj, Ra, Za)
    #As_diff_ra_mult_ra_diff_ra_div_ra_subs_rj_subs_za_ra = lambda zj : As_diff_ra_mult_ra_diff_ra_div_ra_subs_rj(Ra, zj, Za)
    At_diff_za_mult_ra_diff_ra_div_ra_subs_zj_subs_za_ra = lambda rj : num_int( lambda phi_j : At_diff_za_mult_ra_diff_ra_div_ra_subs_zj(rj, Ra, Za, phi_j), 0, 2*pi)
    As_diff_ra_mult_ra_diff_ra_div_ra_subs_rj_subs_za_ra = lambda zj : num_int( lambda phi_j : As_diff_ra_mult_ra_diff_ra_div_ra_subs_rj(Ra, zj, Za, phi_j), 0, 2*pi)

    #At_diff_za_mult_ra_diff_ra_div_ra_num_int = At_diff_za_mult_ra_diff_ra_div_ra_subs_zj_subs_za_ra(rj).nintegral(rj, Rj1, Rj2)
    #As_diff_ra_mult_ra_diff_ra_div_ra_num_int = As_diff_ra_mult_ra_diff_ra_div_ra_subs_rj_subs_za_ra(zj).nintegral(zj, Zj1, Zj2)
    At_diff_za_mult_ra_diff_ra_div_ra_num_int = num_int( lambda rj : At_diff_za_mult_ra_diff_ra_div_ra_subs_zj_subs_za_ra(rj), Rj1, Rj2)
    As_diff_ra_mult_ra_diff_ra_div_ra_num_int = num_int( lambda zj : As_diff_ra_mult_ra_diff_ra_div_ra_subs_rj_subs_za_ra(zj), Zj1, Zj2)
    Av_diff_ra_mult_ra_diff_ra_div_ra_num_int = num_int( lambda zj : num_int( lambda phi_j : Av_diff_ra_mult_ra_diff_ra_div_ra_subs_rj(Ra, zj, Za, phi_j), 0, 2*pi), Zj1, Zj2)
    As_v_diff_ra_mult_ra_diff_ra_div_ra_num_int = As_diff_ra_mult_ra_diff_ra_div_ra_num_int + Av_diff_ra_mult_ra_diff_ra_div_ra_num_int

    rot_H_z = At_diff_za_mult_ra_diff_ra_div_ra_num_int - As_v_diff_ra_mult_ra_diff_ra_div_ra_num_int

    print ("Ra =", Ra, "Za =", Za, "rot_H_z =", rot_H_z)

    return rot_H_z

Теорема о циркуляции магнитного поля записывается следующим образом

$\oint {\vec B}\cdot {\vec {dl}}={\frac {4\pi }{c}}\int {\vec j}\cdot {\vec {ds}}$

Вне материала цилиндра ток проводимости (равно как и молекулярный ток намагниченности) равен нулю.

Поэтому единственно возможный вариант в этом случае принять, что циркуляция магнитного поля в плоскости не пересекающей материал тороидально намагниченного цилиндра, обусловлена токами смещения

$\vec{j_{см}} = \frac{c}{4\pi}\, rot\,\vec{H}$

Подставляя данное выражение для тока смещения в теорему о циркуляции приходим к тождеству

$\oint {\vec B}\cdot {\vec {dl}}= \int { rot\,\vec{H}}\cdot {\vec {ds}}$

проверкой которого и займёмся

$2\,\pi\,R_a\ H_{\varphi} = \int\limits_{0}^{2\pi}\int\limits_{0}^{R_a} r\,rot\,H_z\,{dr}\,{d\varphi}$

$2\,\pi\,R_a\ H_{\varphi} = 2\,\pi\, \int\limits_{0}^{R_a} r\,rot\,H_z\,{dr}$

In [97]:
dr = 0.01
dz = 0.04
Za = Zj1 - dz
circ_H_J_z = []
for Ra in(Rj1 - dr, Rj1 + dr, (Rj1 + Rj2)/2):#, Rj2 - dr, Rj2 + dr, 2 * Rj2, 10 * Rj2):
    (H_phi, H_phi_t, H_phi_s) = calc_H_phi(Za, Ra)
    circ_H = 2 * pi * Ra * H_phi
    print ("circ_H (", Ra, ") = ", circ_H)

    J_z = 2 * pi * num_int( lambda ra : ra * calc_rot_H_z(Za, ra), 0, Ra)
    print ("J_z (", Ra, ") = ", J_z)
    
    circ_H_J_z += [((Ra, Za), (circ_H, J_z))]
Ra = 0.290000000000000 Za = -1.54000000000000 H_phi_t = 31665.54799991644
Ra = 0.290000000000000 Za = -1.54000000000000 H_phi_sv = -31665.547999915227
Ra = 0.290000000000000 Za = -1.54000000000000 H_phi = 1.2150849215686321e-09
circ_H ( 0.290000000000000 ) =  (7.04749254509807e-10)*pi
Ra = 0.145 Za = -1.54000000000000 rot_H_z = -2.0372681319713593e-10
Ra = 0.0037835533650101005 Za = -1.54000000000000 rot_H_z = 7.275957614183426e-11
Ra = 0.2862164466349899 Za = -1.54000000000000 rot_H_z = 3.725290298461914e-09
Ra = 0.01956581183009723 Za = -1.54000000000000 rot_H_z = -2.546585164964199e-10
Ra = 0.2704341881699027 Za = -1.54000000000000 rot_H_z = 1.0919757187366486e-07
Ra = 0.046485612596641454 Za = -1.54000000000000 rot_H_z = -1.2369127944111824e-10
Ra = 0.2435143874033585 Za = -1.54000000000000 rot_H_z = 4.307366907596588e-09
Ra = 0.08215766785125915 Za = -1.54000000000000 rot_H_z = -8.003553375601768e-11
Ra = 0.20784233214874082 Za = -1.54000000000000 rot_H_z = -8.149072527885437e-10
Ra = 0.12341322084766346 Za = -1.54000000000000 rot_H_z = 7.275957614183426e-12
Ra = 0.16658677915233652 Za = -1.54000000000000 rot_H_z = 1.8917489796876907e-10
Ra = 0.0006297113612578342 Za = -1.54000000000000 rot_H_z = 1.6952981241047382e-09
Ra = 0.28937028863874215 Za = -1.54000000000000 rot_H_z = 3.026798367500305e-09
Ra = 0.010127163753422291 Za = -1.54000000000000 rot_H_z = -7.057678885757923e-10
Ra = 0.27987283624657766 Za = -1.54000000000000 rot_H_z = 3.4924596548080444e-10
Ra = 0.03178142964496955 Za = -1.54000000000000 rot_H_z = 1.3023964129388332e-09
Ra = 0.25821857035503043 Za = -1.54000000000000 rot_H_z = 5.820766091346741e-11
Ra = 0.06340021547305232 Za = -1.54000000000000 rot_H_z = -2.0372681319713593e-10
Ra = 0.22659978452694768 Za = -1.54000000000000 rot_H_z = 2.6193447411060333e-10
Ra = 0.10231303490828826 Za = -1.54000000000000 rot_H_z = 1.1423253454267979e-09
Ra = 0.18768696509171173 Za = -1.54000000000000 rot_H_z = -5.238689482212067e-10
Ra = 0.0725 Za = -1.54000000000000 rot_H_z = -1.0913936421275139e-10
Ra = 0.0018917766825050503 Za = -1.54000000000000 rot_H_z = 1.913576852530241e-09
Ra = 0.14310822331749495 Za = -1.54000000000000 rot_H_z = -2.9103830456733704e-10
Ra = 0.009782905915048615 Za = -1.54000000000000 rot_H_z = -6.257323548197746e-10
Ra = 0.13521709408495136 Za = -1.54000000000000 rot_H_z = -2.1827872842550278e-10
Ra = 0.023242806298320727 Za = -1.54000000000000 rot_H_z = -1.0186340659856796e-10
Ra = 0.12175719370167926 Za = -1.54000000000000 rot_H_z = -9.458744898438454e-11
Ra = 0.041078833925629575 Za = -1.54000000000000 rot_H_z = -2.9103830456733704e-11
Ra = 0.10392116607437041 Za = -1.54000000000000 rot_H_z = -3.637978807091713e-11
Ra = 0.06170661042383173 Za = -1.54000000000000 rot_H_z = -9.458744898438454e-11
Ra = 0.08329338957616826 Za = -1.54000000000000 rot_H_z = -5.820766091346741e-11
Ra = 0.0003148556806289171 Za = -1.54000000000000 rot_H_z = 1.1008523870259523e-08
Ra = 0.14468514431937107 Za = -1.54000000000000 rot_H_z = -2.6193447411060333e-10
Ra = 0.005063581876711146 Za = -1.54000000000000 rot_H_z = -2.4010660126805305e-10
Ra = 0.13993641812328883 Za = -1.54000000000000 rot_H_z = 7.712515071034431e-10
Ra = 0.015890714822484775 Za = -1.54000000000000 rot_H_z = -3.055902197957039e-10
Ra = 0.12910928517751522 Za = -1.54000000000000 rot_H_z = -8.003553375601768e-11
Ra = 0.03170010773652616 Za = -1.54000000000000 rot_H_z = -1.6007106751203537e-10
Ra = 0.11329989226347384 Za = -1.54000000000000 rot_H_z = -3.637978807091713e-11
Ra = 0.05115651745414413 Za = -1.54000000000000 rot_H_z = -3.637978807091713e-11
Ra = 0.09384348254585587 Za = -1.54000000000000 rot_H_z = -1.382431946694851e-10
Ra = 0.21749999999999997 Za = -1.54000000000000 rot_H_z = 3.521563485264778e-09
Ra = 0.14689177668250503 Za = -1.54000000000000 rot_H_z = 5.384208634495735e-10
Ra = 0.2881082233174949 Za = -1.54000000000000 rot_H_z = 2.7939677238464355e-09
Ra = 0.1547829059150486 Za = -1.54000000000000 rot_H_z = 7.275957614183426e-11
Ra = 0.2802170940849513 Za = -1.54000000000000 rot_H_z = 1.5133991837501526e-09
Ra = 0.1682428062983207 Za = -1.54000000000000 rot_H_z = 2.6193447411060333e-10
Ra = 0.2667571937016792 Za = -1.54000000000000 rot_H_z = -1.2223608791828156e-09
Ra = 0.18607883392562954 Za = -1.54000000000000 rot_H_z = -5.093170329928398e-10
Ra = 0.2489211660743704 Za = -1.54000000000000 rot_H_z = 2.3283064365386963e-09
Ra = 0.2067066104238317 Za = -1.54000000000000 rot_H_z = 1.2674718163907528e-07
Ra = 0.22829338957616824 Za = -1.54000000000000 rot_H_z = 2.852175384759903e-09
Ra = 0.1453148556806289 Za = -1.54000000000000 rot_H_z = -2.473825588822365e-10
Ra = 0.28968514431937104 Za = -1.54000000000000 rot_H_z = -1.1641532182693481e-09
Ra = 0.15006358187671112 Za = -1.54000000000000 rot_H_z = -1.1641532182693481e-10
Ra = 0.28493641812328885 Za = -1.54000000000000 rot_H_z = 2.6775524020195007e-09
Ra = 0.16089071482248474 Za = -1.54000000000000 rot_H_z = 2.6193447411060333e-10
Ra = 0.2741092851775152 Za = -1.54000000000000 rot_H_z = 1.3969838619232178e-09
Ra = 0.17670010773652614 Za = -1.54000000000000 rot_H_z = 5.660695023834705e-09
Ra = 0.25829989226347383 Za = -1.54000000000000 rot_H_z = 5.5530108511447906e-08
Ra = 0.1961565174541441 Za = -1.54000000000000 rot_H_z = -1.4551915228366852e-11
Ra = 0.23884348254585583 Za = -1.54000000000000 rot_H_z = 2.9103830456733704e-10
J_z ( 0.290000000000000 ) =  (8.916842704358504e-10)*pi
Ra = 0.310000000000000 Za = -1.54000000000000 H_phi_t = 43525.67141553652
Ra = 0.310000000000000 Za = -1.54000000000000 H_phi_sv = -43525.6714155345
Ra = 0.310000000000000 Za = -1.54000000000000 H_phi = 2.015440259128809e-09
circ_H ( 0.310000000000000 ) =  (1.24957296065986e-9)*pi
Ra = 0.155 Za = -1.54000000000000 rot_H_z = -2.9103830456733704e-10
Ra = 0.004044488079838371 Za = -1.54000000000000 rot_H_z = -5.529727786779404e-10
Ra = 0.3059555119201616 Za = -1.54000000000000 rot_H_z = 2.6775524020195007e-09
Ra = 0.0209151781632074 Za = -1.54000000000000 rot_H_z = -1.8917489796876907e-10
Ra = 0.2890848218367926 Za = -1.54000000000000 rot_H_z = 6.984919309616089e-10
Ra = 0.049691516913651215 Za = -1.54000000000000 rot_H_z = -5.820766091346741e-11
Ra = 0.2603084830863488 Za = -1.54000000000000 rot_H_z = 7.741618901491165e-09
Ra = 0.08782371390996668 Za = -1.54000000000000 rot_H_z = -2.9103830456733704e-11
Ra = 0.22217628609003331 Za = -1.54000000000000 rot_H_z = 1.0033254511654377e-06
Ra = 0.13192447745784716 Za = -1.54000000000000 rot_H_z = -2.3283064365386963e-10
Ra = 0.17807552254215284 Za = -1.54000000000000 rot_H_z = 1.076841726899147e-09
Ra = 0.00067313973099975 Za = -1.54000000000000 rot_H_z = 5.456968210637569e-10
Ra = 0.30932686026900025 Za = -1.54000000000000 rot_H_z = 2.7939677238464355e-09
Ra = 0.01082558883986523 Za = -1.54000000000000 rot_H_z = -6.184563972055912e-10
Ra = 0.29917441116013477 Za = -1.54000000000000 rot_H_z = 4.540197551250458e-09
Ra = 0.03397325237910538 Za = -1.54000000000000 rot_H_z = -1.2369127944111824e-10
Ra = 0.27602674762089463 Za = -1.54000000000000 rot_H_z = 3.259629011154175e-09
Ra = 0.06777264412636627 Za = -1.54000000000000 rot_H_z = -1.0913936421275139e-10
Ra = 0.24222735587363373 Za = -1.54000000000000 rot_H_z = 0.0
Ra = 0.10936910628127366 Za = -1.54000000000000 rot_H_z = 3.8708094507455826e-09
Ra = 0.20063089371872633 Za = -1.54000000000000 rot_H_z = -4.656612873077393e-10
Ra = 0.0775 Za = -1.54000000000000 rot_H_z = -6.548361852765083e-11
Ra = 0.0020222440399191854 Za = -1.54000000000000 rot_H_z = 4.220055416226387e-10
Ra = 0.1529777559600808 Za = -1.54000000000000 rot_H_z = 5.529727786779404e-10
Ra = 0.0104575890816037 Za = -1.54000000000000 rot_H_z = -7.057678885757923e-10
Ra = 0.1445424109183963 Za = -1.54000000000000 rot_H_z = -2.3283064365386963e-10
Ra = 0.024845758456825608 Za = -1.54000000000000 rot_H_z = -1.3096723705530167e-10
Ra = 0.1301542415431744 Za = -1.54000000000000 rot_H_z = -1.673470251262188e-10
Ra = 0.04391185695498334 Za = -1.54000000000000 rot_H_z = -8.003553375601768e-11
Ra = 0.11108814304501666 Za = -1.54000000000000 rot_H_z = 5.820766091346741e-11
Ra = 0.06596223872892358 Za = -1.54000000000000 rot_H_z = -1.8917489796876907e-10
Ra = 0.08903776127107642 Za = -1.54000000000000 rot_H_z = -9.458744898438454e-11
Ra = 0.000336569865499875 Za = -1.54000000000000 rot_H_z = 3.3542164601385593e-09
Ra = 0.15466343013450012 Za = -1.54000000000000 rot_H_z = 8.731149137020111e-11
Ra = 0.005412794419932615 Za = -1.54000000000000 rot_H_z = -4.511093720793724e-10
Ra = 0.14958720558006738 Za = -1.54000000000000 rot_H_z = -2.3283064365386963e-10
Ra = 0.01698662618955269 Za = -1.54000000000000 rot_H_z = -2.1827872842550278e-10
Ra = 0.13801337381044732 Za = -1.54000000000000 rot_H_z = -1.0186340659856796e-10
Ra = 0.033886322063183136 Za = -1.54000000000000 rot_H_z = -2.0372681319713593e-10
Ra = 0.12111367793681686 Za = -1.54000000000000 rot_H_z = -1.4551915228366852e-10
Ra = 0.05468455314063683 Za = -1.54000000000000 rot_H_z = -1.5279510989785194e-10
Ra = 0.10031544685936317 Za = -1.54000000000000 rot_H_z = 8.076312951743603e-10
Ra = 0.23249999999999998 Za = -1.54000000000000 rot_H_z = -7.566995918750763e-10
Ra = 0.15702224403991916 Za = -1.54000000000000 rot_H_z = -2.0372681319713593e-10
Ra = 0.3079777559600808 Za = -1.54000000000000 rot_H_z = 3.6088749766349792e-09
Ra = 0.16545758908160368 Za = -1.54000000000000 rot_H_z = -3.2014213502407074e-10
Ra = 0.2995424109183963 Za = -1.54000000000000 rot_H_z = 9.42964106798172e-09
Ra = 0.1798457584568256 Za = -1.54000000000000 rot_H_z = -8.731149137020111e-11
Ra = 0.28515424154317437 Za = -1.54000000000000 rot_H_z = 2.444721758365631e-09
Ra = 0.1989118569549833 Za = -1.54000000000000 rot_H_z = -2.764863893389702e-10
Ra = 0.26608814304501666 Za = -1.54000000000000 rot_H_z = 5.238689482212067e-10
Ra = 0.22096223872892357 Za = -1.54000000000000 rot_H_z = -6.111804395914078e-10
Ra = 0.2440377612710764 Za = -1.54000000000000 rot_H_z = 9.546056389808655e-09
Ra = 0.15533656986549987 Za = -1.54000000000000 rot_H_z = 1.3096723705530167e-09
Ra = 0.3096634301345001 Za = -1.54000000000000 rot_H_z = 4.307366907596588e-09
Ra = 0.16041279441993261 Za = -1.54000000000000 rot_H_z = -3.4924596548080444e-10
Ra = 0.30458720558006736 Za = -1.54000000000000 rot_H_z = 1.0477378964424133e-09
Ra = 0.17198662618955268 Za = -1.54000000000000 rot_H_z = -3.346940502524376e-10
Ra = 0.2930133738104473 Za = -1.54000000000000 rot_H_z = 1.0035000741481781e-07
Ra = 0.18888632206318312 Za = -1.54000000000000 rot_H_z = 4.3655745685100555e-11
Ra = 0.27611367793681685 Za = -1.54000000000000 rot_H_z = -1.1641532182693481e-09
Ra = 0.20968455314063683 Za = -1.54000000000000 rot_H_z = -2.3283064365386963e-10
Ra = 0.25531544685936314 Za = -1.54000000000000 rot_H_z = 2.3283064365386963e-10
J_z ( 0.310000000000000 ) =  (5.196242051754976e-10)*pi
Ra = 0.900000000000000 Za = -1.54000000000000 H_phi_t = 28550.589840493376
Ra = 0.900000000000000 Za = -1.54000000000000 H_phi_sv = -28550.589840493463
Ra = 0.900000000000000 Za = -1.54000000000000 H_phi = -8.731149137020111e-11
circ_H ( 0.900000000000000 ) =  -(1.57160684466362e-10)*pi
Ra = 0.45 Za = -1.54000000000000 rot_H_z = -2.6913767214864492e-08
Ra = 0.011742062167272693 Za = -1.54000000000000 rot_H_z = -6.039044819772243e-10
Ra = 0.8882579378327273 Za = -1.54000000000000 rot_H_z = -2.5393092073500156e-09
Ra = 0.06072148498995694 Za = -1.54000000000000 rot_H_z = -2.4010660126805305e-10
Ra = 0.839278515010043 Za = -1.54000000000000 rot_H_z = -1.7980710254050791e-09
Ra = 0.144265694265439 Za = -1.54000000000000 rot_H_z = -1.6007106751203537e-10
Ra = 0.755734305734561 Za = -1.54000000000000 rot_H_z = 3.294553607702255e-08
Ra = 0.25497207264183874 Za = -1.54000000000000 rot_H_z = -5.820766091346741e-11
Ra = 0.6450279273581613 Za = -1.54000000000000 rot_H_z = 1.6334524843841791e-09
Ra = 0.38300654745826596 Za = -1.54000000000000 rot_H_z = -6.83940015733242e-10
Ra = 0.5169934525417341 Za = -1.54000000000000 rot_H_z = 2.3283064365386963e-10
Ra = 0.0019542766383863763 Za = -1.54000000000000 rot_H_z = 7.203198038041592e-10
Ra = 0.8980457233616137 Za = -1.54000000000000 rot_H_z = 3.6707206163555384e-09
Ra = 0.03142912888993127 Za = -1.54000000000000 rot_H_z = -1.6007106751203537e-10
Ra = 0.8685708711100688 Za = -1.54000000000000 rot_H_z = 5.756646714871749e-09
Ra = 0.0986320230361124 Za = -1.54000000000000 rot_H_z = 4.212779458612204e-09
Ra = 0.8013679769638876 Za = -1.54000000000000 rot_H_z = -2.7348505682311952e-09
Ra = 0.1967592893991279 Za = -1.54000000000000 rot_H_z = 0.0
Ra = 0.7032407106008721 Za = -1.54000000000000 rot_H_z = -5.44787326361984e-09
Ra = 0.31752321178434295 Za = -1.54000000000000 rot_H_z = 1.6298145055770874e-09
Ra = 0.5824767882156571 Za = -1.54000000000000 rot_H_z = 3.4924596548080444e-10
Ra = 0.225 Za = -1.54000000000000 rot_H_z = 1.1932570487260818e-09
Ra = 0.005871031083636347 Za = -1.54000000000000 rot_H_z = -3.8562575355172157e-10
Ra = 0.44412896891636366 Za = -1.54000000000000 rot_H_z = 1.724401954561472e-09
Ra = 0.03036074249497847 Za = -1.54000000000000 rot_H_z = -1.3096723705530167e-10
Ra = 0.4196392575050215 Za = -1.54000000000000 rot_H_z = -1.2441887520253658e-09
Ra = 0.0721328471327195 Za = -1.54000000000000 rot_H_z = -5.093170329928398e-11
Ra = 0.3778671528672805 Za = -1.54000000000000 rot_H_z = -7.8580342233181e-10
Ra = 0.12748603632091937 Za = -1.54000000000000 rot_H_z = -1.8189894035458565e-10
Ra = 0.32251396367908064 Za = -1.54000000000000 rot_H_z = -3.026798367500305e-09
Ra = 0.19150327372913298 Za = -1.54000000000000 rot_H_z = -4.3655745685100555e-11
Ra = 0.25849672627086706 Za = -1.54000000000000 rot_H_z = 2.0558945834636688e-07
Ra = 0.0009771383191931882 Za = -1.54000000000000 rot_H_z = 3.128661774098873e-10
Ra = 0.44902286168080685 Za = -1.54000000000000 rot_H_z = 6.83940015733242e-10
Ra = 0.015714564444965634 Za = -1.54000000000000 rot_H_z = -1.0186340659856796e-10
Ra = 0.4342854355550344 Za = -1.54000000000000 rot_H_z = 3.4633558243513107e-09
Ra = 0.0493160115180562 Za = -1.54000000000000 rot_H_z = -2.9103830456733704e-11
Ra = 0.4006839884819438 Za = -1.54000000000000 rot_H_z = 2.35741026699543e-09
Ra = 0.09837964469956395 Za = -1.54000000000000 rot_H_z = 2.1100277081131935e-09
Ra = 0.35162035530043606 Za = -1.54000000000000 rot_H_z = -3.725290298461914e-09
Ra = 0.15876160589217148 Za = -1.54000000000000 rot_H_z = 4.3655745685100555e-10
Ra = 0.29123839410782854 Za = -1.54000000000000 rot_H_z = 3.725290298461914e-09
Ra = 0.675 Za = -1.54000000000000 rot_H_z = 4.40741132479161e-09
Ra = 0.45587103108363636 Za = -1.54000000000000 rot_H_z = 2.561137080192566e-09
Ra = 0.8941289689163637 Za = -1.54000000000000 rot_H_z = -2.5843291950877756e-09
Ra = 0.4803607424949785 Za = -1.54000000000000 rot_H_z = -4.5411434257403016e-07
Ra = 0.8696392575050216 Za = -1.54000000000000 rot_H_z = 1.2005330063402653e-09
Ra = 0.5221328471327196 Za = -1.54000000000000 rot_H_z = 1.520675141364336e-09
Ra = 0.8278671528672805 Za = -1.54000000000000 rot_H_z = 7.074049790389836e-09
Ra = 0.5774860363209194 Za = -1.54000000000000 rot_H_z = -4.911271389573812e-10
Ra = 0.7725139636790807 Za = -1.54000000000000 rot_H_z = 7.177015140769072e-05
Ra = 0.6415032737291331 Za = -1.54000000000000 rot_H_z = -1.3133103493601084e-08
Ra = 0.708496726270867 Za = -1.54000000000000 rot_H_z = -2.7293936000205576e-08
Ra = 0.4509771383191932 Za = -1.54000000000000 rot_H_z = 2.321030478924513e-09
Ra = 0.8990228616808069 Za = -1.54000000000000 rot_H_z = -6.743903213646263e-10
Ra = 0.4657145644449657 Za = -1.54000000000000 rot_H_z = 9.022187441587448e-10
Ra = 0.8842854355550345 Za = -1.54000000000000 rot_H_z = -6.609752745134756e-10
Ra = 0.49931601151805627 Za = -1.54000000000000 rot_H_z = 4.220055416226387e-10
Ra = 0.8506839884819438 Za = -1.54000000000000 rot_H_z = -2.0627339836210012e-09
Ra = 0.548379644699564 Za = -1.54000000000000 rot_H_z = -2.7466739993542433e-09
Ra = 0.8016203553004361 Za = -1.54000000000000 rot_H_z = 9.258656064048409e-10
Ra = 0.6087616058921715 Za = -1.54000000000000 rot_H_z = 1.259868440683931e-07
Ra = 0.7412383941078285 Za = -1.54000000000000 rot_H_z = 1.9990693544968963e-09
Ra = 0.5625 Za = -1.54000000000000 rot_H_z = -3.1486706575378776e-09
Ra = 0.45293551554181816 Za = -1.54000000000000 rot_H_z = 3.448803909122944e-09
Ra = 0.6720644844581818 Za = -1.54000000000000 rot_H_z = -2.7594069251790643e-09
Ra = 0.46518037124748923 Za = -1.54000000000000 rot_H_z = -4.398316377773881e-09
Ra = 0.6598196287525108 Za = -1.54000000000000 rot_H_z = 1.7644197214394808e-10
Ra = 0.48606642356635976 Za = -1.54000000000000 rot_H_z = 4.667526809498668e-09
Ra = 0.6389335764336402 Za = -1.54000000000000 rot_H_z = -1.800799509510398e-10
Ra = 0.5137430181604596 Za = -1.54000000000000 rot_H_z = -5.493347998708487e-10
Ra = 0.6112569818395404 Za = -1.54000000000000 rot_H_z = -2.9367583920247853e-09
Ra = 0.5457516368645665 Za = -1.54000000000000 rot_H_z = 3.3396645449101925e-09
Ra = 0.5792483631354335 Za = -1.54000000000000 rot_H_z = -3.3305695978924632e-09
Ra = 0.45048856915959656 Za = -1.54000000000000 rot_H_z = -2.5756889954209328e-09
Ra = 0.6745114308404034 Za = -1.54000000000000 rot_H_z = 2.6921043172478676e-10
Ra = 0.4578572822224828 Za = -1.54000000000000 rot_H_z = -1.5679688658565283e-08
Ra = 0.6671427177775172 Za = -1.54000000000000 rot_H_z = -1.2605596566572785e-09
Ra = 0.47465800575902806 Za = -1.54000000000000 rot_H_z = 8.803908713161945e-10
Ra = 0.6503419942409719 Za = -1.54000000000000 rot_H_z = 2.268279786221683e-09
Ra = 0.499189822349782 Za = -1.54000000000000 rot_H_z = -5.303445504978299e-08
Ra = 0.6258101776502181 Za = -1.54000000000000 rot_H_z = 4.054527380503714e-09
Ra = 0.5293808029460857 Za = -1.54000000000000 rot_H_z = -4.443791112862527e-09
Ra = 0.5956191970539143 Za = -1.54000000000000 rot_H_z = 2.684828359633684e-09
Ra = 0.7875000000000001 Za = -1.54000000000000 rot_H_z = 4.05634636990726e-10
Ra = 0.6779355155418183 Za = -1.54000000000000 rot_H_z = 3.3669493859633803e-09
Ra = 0.8970644844581819 Za = -1.54000000000000 rot_H_z = 2.025444700848311e-09
Ra = 0.6901803712474893 Za = -1.54000000000000 rot_H_z = -5.799847713205963e-09
Ra = 0.8848196287525109 Za = -1.54000000000000 rot_H_z = 3.5836364986607805e-09
Ra = 0.7110664235663599 Za = -1.54000000000000 rot_H_z = -5.06588548887521e-09
Ra = 0.8639335764336403 Za = -1.54000000000000 rot_H_z = 5.229153430263977e-07
Ra = 0.7387430181604597 Za = -1.54000000000000 rot_H_z = 1.7789716366678476e-09
Ra = 0.8362569818395404 Za = -1.54000000000000 rot_H_z = -8.86757334228605e-10
Ra = 0.7707516368645666 Za = -1.54000000000000 rot_H_z = 3.77985998056829e-09
Ra = 0.8042483631354336 Za = -1.54000000000000 rot_H_z = 8.139977580867708e-10
Ra = 0.6754885691595967 Za = -1.54000000000000 rot_H_z = 4.420144250616431e-10
Ra = 0.8995114308404035 Za = -1.54000000000000 rot_H_z = 3.788954927586019e-09
Ra = 0.6828572822224829 Za = -1.54000000000000 rot_H_z = 3.259629011154175e-09
Ra = 0.8921427177775173 Za = -1.54000000000000 rot_H_z = 1.7598722479306161e-10
Ra = 0.6996580057590283 Za = -1.54000000000000 rot_H_z = -3.9608494262211025e-10
Ra = 0.8753419942409719 Za = -1.54000000000000 rot_H_z = 2.928572939708829e-10
Ra = 0.724189822349782 Za = -1.54000000000000 rot_H_z = -5.456968210637569e-10
Ra = 0.8508101776502182 Za = -1.54000000000000 rot_H_z = -1.127773430198431e-09
Ra = 0.7543808029460858 Za = -1.54000000000000 rot_H_z = 6.320988177321851e-10
Ra = 0.8206191970539144 Za = -1.54000000000000 rot_H_z = 4.612047632690519e-09
J_z ( 0.900000000000000 ) =  (1.4031810418048246e-08)*pi
In [98]:
for (Ra, Za), (circ_H, J_z) in circ_H_J_z:
    print ("Ra=", Ra, "Za=", Za, "circ_H=", circ_H, "J_z=", J_z)
Ra= 0.290000000000000 Za= -1.54000000000000 circ_H= (7.04749254509807e-10)*pi J_z= (8.916842704358504e-10)*pi
Ra= 0.310000000000000 Za= -1.54000000000000 circ_H= (1.24957296065986e-9)*pi J_z= (5.196242051754976e-10)*pi
Ra= 0.900000000000000 Za= -1.54000000000000 circ_H= -(1.57160684466362e-10)*pi J_z= (1.4031810418048246e-08)*pi

Итак мы видим, что результат проверки теоремы циркуляции в плоскости, отстоящей на некоторое расстояние от левого торца цилиндра вполне удовлетворителен, что косвенно подтверждает гипотезу о существовании токов смещения вне материала тороидально намагниченного цилиндра

Ниже представлены графики $z$-компоненты плотности тока смещения (исходя из ротора напряженности магнитного поля) вне материала тороидально намагниченного цилиндра в зависимости от $z$ координаты для разных радиальных координат

In [99]:
plot_data_rot_H_z = []

Ra = (Rj1 + Rj2) / 2
for dz in (0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 1.5, 2.0):
    Za = Zj1 - dz
    j_z = calc_rot_H_z(Za, Ra)
    plot_data_rot_H_z += [(Za, j_z)]

list_plot(plot_data_rot_H_z)
Ra = 0.900000000000000 Za = -1.51000000000000 rot_H_z = -4.0749728213995695e-07
Ra = 0.900000000000000 Za = -1.52000000000000 rot_H_z = -5.593892637989484e-08
Ra = 0.900000000000000 Za = -1.53000000000000 rot_H_z = 6.5906533563975245e-09
Ra = 0.900000000000000 Za = -1.54000000000000 rot_H_z = 6.539266905747354e-10
Ra = 0.900000000000000 Za = -1.55000000000000 rot_H_z = -1.44427758641541e-09
Ra = 0.900000000000000 Za = -1.60000000000000 rot_H_z = 1.179614628199488e-09
Ra = 0.900000000000000 Za = -1.70000000000000 rot_H_z = 2.346496330574155e-10
Ra = 0.900000000000000 Za = -1.80000000000000 rot_H_z = 1.000444171950221e-11
Ra = 0.900000000000000 Za = -1.90000000000000 rot_H_z = -4.638422979041934e-11
Ra = 0.900000000000000 Za = -2.00000000000000 rot_H_z = 0.0
Ra = 0.900000000000000 Za = -2.50000000000000 rot_H_z = 0.0
Ra = 0.900000000000000 Za = -3.00000000000000 rot_H_z = -4.547473508864641e-13
Ra = 0.900000000000000 Za = -3.50000000000000 rot_H_z = -6.821210263296962e-13
Out[99]:
In [100]:
plot_data_rot_H_z = []

Ra = (Rj1) / 2
for dz in (0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 1.5, 2.0):
    Za = Zj1 - dz
    j_z = calc_rot_H_z(Za, Ra)
    plot_data_rot_H_z += [(Za, j_z)]

list_plot(plot_data_rot_H_z)
Ra = 0.150000000000000 Za = -1.51000000000000 rot_H_z = -3.092281986027956e-10
Ra = 0.150000000000000 Za = -1.52000000000000 rot_H_z = 4.874891601502895e-10
Ra = 0.150000000000000 Za = -1.53000000000000 rot_H_z = 6.621121428906918e-10
Ra = 0.150000000000000 Za = -1.54000000000000 rot_H_z = -2.0372681319713593e-10
Ra = 0.150000000000000 Za = -1.55000000000000 rot_H_z = -3.739842213690281e-09
Ra = 0.150000000000000 Za = -1.60000000000000 rot_H_z = -2.0372681319713593e-10
Ra = 0.150000000000000 Za = -1.70000000000000 rot_H_z = 2.473825588822365e-09
Ra = 0.150000000000000 Za = -1.80000000000000 rot_H_z = -2.9103830456733704e-11
Ra = 0.150000000000000 Za = -1.90000000000000 rot_H_z = 0.0
Ra = 0.150000000000000 Za = -2.00000000000000 rot_H_z = -4.3655745685100555e-11
Ra = 0.150000000000000 Za = -2.50000000000000 rot_H_z = -3.637978807091713e-12
Ra = 0.150000000000000 Za = -3.00000000000000 rot_H_z = -5.4569682106375694e-12
Ra = 0.150000000000000 Za = -3.50000000000000 rot_H_z = -3.183231456205249e-12
Out[100]:
In [101]:
plot_data_rot_H_z = []

Ra = (Rj1) / 10
for dz in (0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 1.5, 2.0):
    Za = Zj1 - dz
    j_z = calc_rot_H_z(Za, Ra)
    plot_data_rot_H_z += [(Za, j_z)]
    
list_plot(plot_data_rot_H_z)
Ra = 0.0300000000000000 Za = -1.51000000000000 rot_H_z = -1.6007106751203537e-10
Ra = 0.0300000000000000 Za = -1.52000000000000 rot_H_z = -1.6007106751203537e-10
Ra = 0.0300000000000000 Za = -1.53000000000000 rot_H_z = -1.4915713109076023e-10
Ra = 0.0300000000000000 Za = -1.54000000000000 rot_H_z = -1.6007106751203537e-10
Ra = 0.0300000000000000 Za = -1.55000000000000 rot_H_z = -1.3096723705530167e-10
Ra = 0.0300000000000000 Za = -1.60000000000000 rot_H_z = 4.3655745685100555e-10
Ra = 0.0300000000000000 Za = -1.70000000000000 rot_H_z = -2.9103830456733704e-11
Ra = 0.0300000000000000 Za = -1.80000000000000 rot_H_z = -5.820766091346741e-11
Ra = 0.0300000000000000 Za = -1.90000000000000 rot_H_z = -2.0372681319713593e-10
Ra = 0.0300000000000000 Za = -2.00000000000000 rot_H_z = -6.548361852765083e-11
Ra = 0.0300000000000000 Za = -2.50000000000000 rot_H_z = -1.0913936421275139e-11
Ra = 0.0300000000000000 Za = -3.00000000000000 rot_H_z = 1.000444171950221e-11
Ra = 0.0300000000000000 Za = -3.50000000000000 rot_H_z = 2.7284841053187847e-12
Out[101]:
In [102]:
plot_data_rot_H_z = []

Ra = (Rj1) / 100
for dz in (0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 1.5, 2.0):
    Za = Zj1 - dz
    j_z = calc_rot_H_z(Za, Ra)
    plot_data_rot_H_z += [(Za, j_z)]
    
list_plot(plot_data_rot_H_z)
Ra = 0.00300000000000000 Za = -1.51000000000000 rot_H_z = -2.710294211283326e-10
Ra = 0.00300000000000000 Za = -1.52000000000000 rot_H_z = 6.9267116487026215e-09
Ra = 0.00300000000000000 Za = -1.53000000000000 rot_H_z = 5.820766091346741e-11
Ra = 0.00300000000000000 Za = -1.54000000000000 rot_H_z = 3.41970007866621e-10
Ra = 0.00300000000000000 Za = -1.55000000000000 rot_H_z = 2.3283064365386963e-10
Ra = 0.00300000000000000 Za = -1.60000000000000 rot_H_z = 4.511093720793724e-10
Ra = 0.00300000000000000 Za = -1.70000000000000 rot_H_z = 4.94765117764473e-10
Ra = 0.00300000000000000 Za = -1.80000000000000 rot_H_z = 3.7834979593753815e-10
Ra = 0.00300000000000000 Za = -1.90000000000000 rot_H_z = 4.656612873077393e-10
Ra = 0.00300000000000000 Za = -2.00000000000000 rot_H_z = 4.2928149923682213e-10
Ra = 0.00300000000000000 Za = -2.50000000000000 rot_H_z = 2.0736479200422764e-10
Ra = 0.00300000000000000 Za = -3.00000000000000 rot_H_z = -3.456079866737127e-11
Ra = 0.00300000000000000 Za = -3.50000000000000 rot_H_z = 2.2737367544323206e-11
Out[102]:
In [103]:
plot_data_rot_H_z = []

Ra = (Rj2) * 2
for dz in (0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 1.5, 2.0):
    Za = Zj1 - dz
    j_z = calc_rot_H_z(Za, Ra)
    plot_data_rot_H_z += [(Za, j_z)]

list_plot(plot_data_rot_H_z)
Ra = 3.00000000000000 Za = -1.51000000000000 rot_H_z = 6.856737400084967e-13
Ra = 3.00000000000000 Za = -1.52000000000000 rot_H_z = 4.2099657093785936e-13
Ra = 3.00000000000000 Za = -1.53000000000000 rot_H_z = -4.351202953500888e-09
Ra = 3.00000000000000 Za = -1.54000000000000 rot_H_z = 7.780442956573097e-13
Ra = 3.00000000000000 Za = -1.55000000000000 rot_H_z = 6.430411758628907e-13
Ra = 3.00000000000000 Za = -1.60000000000000 rot_H_z = 9.379164112033322e-13
Ra = 3.00000000000000 Za = -1.70000000000000 rot_H_z = 6.821210263296962e-13
Ra = 3.00000000000000 Za = -1.80000000000000 rot_H_z = -4.007461029686965e-12
Ra = 3.00000000000000 Za = -1.90000000000000 rot_H_z = 5.684341886080801e-13
Ra = 3.00000000000000 Za = -2.00000000000000 rot_H_z = 3.410605131648481e-13
Ra = 3.00000000000000 Za = -2.50000000000000 rot_H_z = 1.1368683772161603e-13
Ra = 3.00000000000000 Za = -3.00000000000000 rot_H_z = -1.1368683772161603e-13
Ra = 3.00000000000000 Za = -3.50000000000000 rot_H_z = 0.0
Out[103]:

Ниже представлена процедура вычисления $r$-компоненты плотности тока смещения исходя из ротора напряженности магнитного поля

In [104]:
At2_diff_za_diff_za = lambda J, c, kappa, rj, ra, zj1, zj2, za, phi_j : At2_diff_za (J, c, kappa, rj, ra, zj1, zj2, za, phi_j).diff(za)
In [105]:
As2_diff_ra_diff_za = lambda J, c, kappa, rj1, rj2, ra, zj, za, phi_j : As2_diff_ra (J, c, kappa, rj1, rj2, ra, zj, za, phi_j).diff(za)
In [106]:
exec(preparse("At_diff_za_diff_za_subs_zj = lambda rj, ra, za, phi_j : " + str(At2_diff_za_diff_za (J_d, c_d, kappa_d, rj, ra, Zj1, Zj2, za, phi_j))))
In [107]:
exec(preparse("As_diff_ra_diff_za_subs_rj = lambda ra, zj, za, phi_j : " + str(As2_diff_ra_diff_za (J_d, c_d, kappa_d, Rj1, Rj2, ra, zj, za, phi_j))))
In [108]:
exec(preparse("Av_diff_ra_diff_za = lambda J, c, kappa, rj, ra, zj, za, phi_j : " + str(diff(Av_diff_ra(J, c, kappa, rj, ra, zj, za, phi_j),za))))
In [109]:
AV_diff_ra_diff_za = lambda J, c, kappa, rj1, rj2, ra, zj, za, phi_j : num_int(lambda rj : Av_diff_ra_diff_za(J, c, kappa, rj, ra, zj, za, phi_j), rj1, rj2)
In [110]:
Av_diff_ra_diff_za_subs_rj = lambda ra, zj, za, phi_j : AV_diff_ra_diff_za (J_d, c_d, kappa_d, Rj1, Rj2, ra, zj, za, phi_j)
In [111]:
def calc_rot_H_r(Za, Ra):
    At_diff_za_subs_zj_diff_za_subs_za_ra = lambda rj : num_int( lambda phi_j : At_diff_za_diff_za_subs_zj(rj, Ra, Za, phi_j), 0, 2*pi)
    As_diff_ra_subs_rj_diff_za_subs_za_ra = lambda zj : num_int( lambda phi_j : As_diff_ra_diff_za_subs_rj(Ra, zj, Za, phi_j), 0, 2*pi)

    #At_diff_za_diff_za_num_int = At_diff_za_subs_zj_diff_za_subs_za_ra(rj).nintegral(rj, Rj1, Rj2)
    #As_diff_ra_diff_za_num_int = As_diff_ra_subs_rj_diff_za_subs_za_ra(zj).nintegral(zj, Zj1, Zj2)
    At_diff_za_diff_za_num_int = num_int( lambda rj : At_diff_za_subs_zj_diff_za_subs_za_ra(rj), Rj1, Rj2)
    As_diff_ra_diff_za_num_int = num_int( lambda zj : As_diff_ra_subs_rj_diff_za_subs_za_ra(zj), Zj1, Zj2)
    Av_diff_ra_diff_za_num_int = num_int( lambda zj : num_int( lambda phi_j : Av_diff_ra_diff_za_subs_rj(Ra, zj, Za, phi_j), 0, 2*pi), Zj1, Zj2)
    As_v_diff_ra_diff_za_num_int = As_diff_ra_diff_za_num_int + Av_diff_ra_diff_za_num_int

    rot_H_r = - At_diff_za_diff_za_num_int + As_v_diff_ra_diff_za_num_int

    print ("Ra =", Ra, "Za =", Za, "rot_H_r =", rot_H_r)

    return rot_H_r

График $r$-компоненты плотности тока смещения (исходя из ротора напряженности магнитного поля) вне материала тороидально намагниченного цилиндра в зависимости от $z$ координаты для радиальной координаты центра тела тороида

In [112]:
plot_data_rot_H_r = []

Ra = (Rj1 + Rj2) / 2
for dz in (0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 1.5, 2.0):
    Za = Zj1 - dz
    j_r = calc_rot_H_r(Za, Ra)
    plot_data_rot_H_r += [(Za, j_r)]

list_plot(plot_data_rot_H_r).show()
Ra = 0.900000000000000 Za = -1.51000000000000 rot_H_r = 7.671478670090437e-07
Ra = 0.900000000000000 Za = -1.52000000000000 rot_H_r = 7.321068551391363e-08
Ra = 0.900000000000000 Za = -1.53000000000000 rot_H_r = 1.9630533643066883e-08
Ra = 0.900000000000000 Za = -1.54000000000000 rot_H_r = 1.6683770809322596e-08
Ra = 0.900000000000000 Za = -1.55000000000000 rot_H_r = -1.8044374883174896e-09
Ra = 0.900000000000000 Za = -1.60000000000000 rot_H_r = -2.9103830456733704e-10
Ra = 0.900000000000000 Za = -1.70000000000000 rot_H_r = 1.5279510989785194e-10
Ra = 0.900000000000000 Za = -1.80000000000000 rot_H_r = 4.3655745685100555e-11
Ra = 0.900000000000000 Za = -1.90000000000000 rot_H_r = 9.822542779147625e-11
Ra = 0.900000000000000 Za = -2.00000000000000 rot_H_r = -3.5288394428789616e-10
Ra = 0.900000000000000 Za = -2.50000000000000 rot_H_r = 1.8189894035458565e-12
Ra = 0.900000000000000 Za = -3.00000000000000 rot_H_r = 9.094947017729282e-13
Ra = 0.900000000000000 Za = -3.50000000000000 rot_H_r = 4.547473508864641e-13

Теперь представляет интерес двумерная визуализация скалярного и векторного магнитного полей а также тока смещения (ротора $H$)

In [113]:
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

za_linspace = np.linspace(-3, 3, 20)
ra_linspace = np.linspace(0.1, 3, 9)

za_list = za_linspace.tolist()
ra_list = ra_linspace.tolist()

za_grid,ra_grid = np.meshgrid(za_linspace, ra_linspace)

u = za_grid * np.nan
v = ra_grid * np.nan
s = ra_grid * np.nan
s_t = ra_grid * np.nan
s_s = ra_grid * np.nan
h = ra_grid * np.nan
h_t = ra_grid * np.nan
h_s = ra_grid * np.nan

for iz in np.arange(0, len(za_linspace), 1):
    for ir in np.arange(0, len(ra_linspace), 1):
        Za = za_list[iz]
        Ra = ra_list[ir]
        u[ir][iz] = calc_rot_H_z(Za, Ra)
        v[ir][iz] = calc_rot_H_r(Za, Ra)
        
        h_scalar = calc_H_scalar(Za, Ra)
        s  [ir][iz] = h_scalar[0]
        s_t[ir][iz] = h_scalar[1]
        s_s[ir][iz] = h_scalar[2]
        
        h_phi = calc_H_phi(Za, Ra)
        h  [ir][iz] = h_phi[0]
        h_t[ir][iz] = h_phi[1]
        h_s[ir][iz] = h_phi[2]
Ra = 0.1 Za = -3.0 rot_H_z = -1.9099388737231493e-11
Ra = 0.1 Za = -3.0 rot_H_r = 1.0231815394945443e-12
Ra = 0.1 Za = -3.0 H_scalar_t = -4684.769465255218
Ra = 0.1 Za = -3.0 H_scalar_sv = 4684.769465255219
Ra = 0.1 Za = -3.0 H_scalar = 9.094947017729282e-13
Ra = 0.1 Za = -3.0 H_phi_t = 349.1571703234048
Ra = 0.1 Za = -3.0 H_phi_sv = -349.1571703234049
Ra = 0.1 Za = -3.0 H_phi = -1.1368683772161603e-13
Ra = 0.4625 Za = -3.0 rot_H_z = -9.094947017729282e-13
Ra = 0.4625 Za = -3.0 rot_H_r = 9.094947017729282e-13
Ra = 0.4625 Za = -3.0 H_scalar_t = -4075.169080273908
Ra = 0.4625 Za = -3.0 H_scalar_sv = 4075.169080273909
Ra = 0.4625 Za = -3.0 H_scalar = 9.094947017729282e-13
Ra = 0.4625 Za = -3.0 H_phi_t = 1460.275990841293
Ra = 0.4625 Za = -3.0 H_phi_sv = -1460.2759908412932
Ra = 0.4625 Za = -3.0 H_phi = -2.2737367544323206e-13
Ra = 0.825 Za = -3.0 rot_H_z = -1.3642420526593924e-12
Ra = 0.825 Za = -3.0 rot_H_r = -7.776179700158536e-11
Ra = 0.825 Za = -3.0 H_scalar_t = -2955.170854809854
Ra = 0.825 Za = -3.0 H_scalar_sv = 2955.170854809856
Ra = 0.825 Za = -3.0 H_scalar = 1.8189894035458565e-12
Ra = 0.825 Za = -3.0 H_phi_t = 2083.000048413843
Ra = 0.825 Za = -3.0 H_phi_sv = -2083.0000484138436
Ra = 0.825 Za = -3.0 H_phi = -4.547473508864641e-13
Ra = 1.1875 Za = -3.0 rot_H_z = -4.547473508864641e-13
Ra = 1.1875 Za = -3.0 rot_H_r = 4.547473508864641e-13
Ra = 1.1875 Za = -3.0 H_scalar_t = -1760.8640438890293
Ra = 1.1875 Za = -3.0 H_scalar_sv = 1760.8640438890307
Ra = 1.1875 Za = -3.0 H_scalar = 1.3642420526593924e-12
Ra = 1.1875 Za = -3.0 H_phi_t = 2147.522281212658
Ra = 1.1875 Za = -3.0 H_phi_sv = -2147.522281212658
Ra = 1.1875 Za = -3.0 H_phi = 0.0
Ra = 1.55 Za = -3.0 rot_H_z = -5.3958504331319546e-12
Ra = 1.55 Za = -3.0 rot_H_r = 2.546585164964199e-11
Ra = 1.55 Za = -3.0 H_scalar_t = -814.6133501388293
Ra = 1.55 Za = -3.0 H_scalar_sv = 814.613350138827
Ra = 1.55 Za = -3.0 H_scalar = -2.3874235921539366e-12
Ra = 1.55 Za = -3.0 H_phi_t = 1827.8211378914446
Ra = 1.55 Za = -3.0 H_phi_sv = -1827.8211378914348
Ra = 1.55 Za = -3.0 H_phi = 9.777068044058979e-12
Ra = 1.9125 Za = -3.0 rot_H_z = 4.661160346586257e-12
Ra = 1.9125 Za = -3.0 rot_H_r = -4.4565240386873484e-11
Ra = 1.9125 Za = -3.0 H_scalar_t = -221.04348140593734
Ra = 1.9125 Za = -3.0 H_scalar_sv = 221.04348140593765
Ra = 1.9125 Za = -3.0 H_scalar = 3.126388037344441e-13
Ra = 1.9125 Za = -3.0 H_phi_t = 1368.5975488266547
Ra = 1.9125 Za = -3.0 H_phi_sv = -1368.597548826657
Ra = 1.9125 Za = -3.0 H_phi = -2.2737367544323206e-12
Ra = 2.275 Za = -3.0 rot_H_z = 3.637978807091713e-12
Ra = 2.275 Za = -3.0 rot_H_r = 2.2737367544323206e-13
Ra = 2.275 Za = -3.0 H_scalar_t = 79.96981378008734
Ra = 2.275 Za = -3.0 H_scalar_sv = -79.96981378008763
Ra = 2.275 Za = -3.0 H_scalar = -2.984279490192421e-13
Ra = 2.275 Za = -3.0 H_phi_t = 944.2129881279387
Ra = 2.275 Za = -3.0 H_phi_sv = -944.2129881279328
Ra = 2.275 Za = -3.0 H_phi = 5.9117155615240335e-12
Ra = 2.6375 Za = -3.0 rot_H_z = 5.115907697472721e-12
Ra = 2.6375 Za = -3.0 rot_H_r = -7.077005648170598e-12
Ra = 2.6375 Za = -3.0 H_scalar_t = 199.95424975596475
Ra = 2.6375 Za = -3.0 H_scalar_sv = -199.9542497559704
Ra = 2.6375 Za = -3.0 H_scalar = -5.6559201766503975e-12
Ra = 2.6375 Za = -3.0 H_phi_t = 621.1694637367258
Ra = 2.6375 Za = -3.0 H_phi_sv = -621.1694637367231
Ra = 2.6375 Za = -3.0 H_phi = 2.7284841053187847e-12
Ra = 3.0 Za = -3.0 rot_H_z = -1.1368683772161603e-13
Ra = 3.0 Za = -3.0 rot_H_r = 1.234568003383174e-13
Ra = 3.0 Za = -3.0 H_scalar_t = 227.83849736415172
Ra = 3.0 Za = -3.0 H_scalar_sv = -227.83849736415016
Ra = 3.0 Za = -3.0 H_scalar = 1.5631940186722204e-12
Ra = 3.0 Za = -3.0 H_phi_t = 397.83291461769124
Ra = 3.0 Za = -3.0 H_phi_sv = -397.8329146176885
Ra = 3.0 Za = -3.0 H_phi = 2.7284841053187847e-12
Ra = 0.1 Za = -2.6842105263157894 rot_H_z = -3.637978807091713e-12
Ra = 0.1 Za = -2.6842105263157894 rot_H_r = 6.821210263296962e-13
Ra = 0.1 Za = -2.6842105263157894 H_scalar_t = -7691.927304359136
Ra = 0.1 Za = -2.6842105263157894 H_scalar_sv = 7691.92730435916
Ra = 0.1 Za = -2.6842105263157894 H_scalar = 2.4556356947869062e-11
Ra = 0.1 Za = -2.6842105263157894 H_phi_t = 643.8519861733145
Ra = 0.1 Za = -2.6842105263157894 H_phi_sv = -643.8519861733163
Ra = 0.1 Za = -2.6842105263157894 H_phi = -1.8189894035458565e-12
Ra = 0.4625 Za = -2.6842105263157894 rot_H_z = -5.4569682106375694e-12
Ra = 0.4625 Za = -2.6842105263157894 rot_H_r = 3.637978807091713e-12
Ra = 0.4625 Za = -2.6842105263157894 H_scalar_t = -6456.412112259111
Ra = 0.4625 Za = -2.6842105263157894 H_scalar_sv = 6456.412112259113
Ra = 0.4625 Za = -2.6842105263157894 H_scalar = 1.8189894035458565e-12
Ra = 0.4625 Za = -2.6842105263157894 H_phi_t = 2625.928470970355
Ra = 0.4625 Za = -2.6842105263157894 H_phi_sv = -2625.9284709702924
Ra = 0.4625 Za = -2.6842105263157894 H_phi = 6.275513442233205e-11
Ra = 0.825 Za = -2.6842105263157894 rot_H_z = 0.0
Ra = 0.825 Za = -2.6842105263157894 rot_H_r = 1.8189894035458565e-12
Ra = 0.825 Za = -2.6842105263157894 H_scalar_t = -4305.009310395599
Ra = 0.825 Za = -2.6842105263157894 H_scalar_sv = 4305.009310395601
Ra = 0.825 Za = -2.6842105263157894 H_scalar = 1.8189894035458565e-12
Ra = 0.825 Za = -2.6842105263157894 H_phi_t = 3554.905764923785
Ra = 0.825 Za = -2.6842105263157894 H_phi_sv = -3554.905764923805
Ra = 0.825 Za = -2.6842105263157894 H_phi = -2.000888343900442e-11
Ra = 1.1875 Za = -2.6842105263157894 rot_H_z = -1.2505552149377763e-11
Ra = 1.1875 Za = -2.6842105263157894 rot_H_r = 1.8189894035458565e-12
Ra = 1.1875 Za = -2.6842105263157894 H_scalar_t = -2196.072997993688
Ra = 1.1875 Za = -2.6842105263157894 H_scalar_sv = 2196.0729979936887
Ra = 1.1875 Za = -2.6842105263157894 H_scalar = 4.547473508864641e-13
Ra = 1.1875 Za = -2.6842105263157894 H_phi_t = 3405.501330350127
Ra = 1.1875 Za = -2.6842105263157894 H_phi_sv = -3405.501330327228
Ra = 1.1875 Za = -2.6842105263157894 H_phi = 2.28988028538879e-08
Ra = 1.55 Za = -2.6842105263157894 rot_H_z = -9.549694368615746e-12
Ra = 1.55 Za = -2.6842105263157894 rot_H_r = 3.456079866737127e-11
Ra = 1.55 Za = -2.6842105263157894 H_scalar_t = -713.6077787135542
Ra = 1.55 Za = -2.6842105263157894 H_scalar_sv = 713.6077787135546
Ra = 1.55 Za = -2.6842105263157894 H_scalar = 3.410605131648481e-13
Ra = 1.55 Za = -2.6842105263157894 H_phi_t = 2637.969794676703
Ra = 1.55 Za = -2.6842105263157894 H_phi_sv = -2637.9697946767096
Ra = 1.55 Za = -2.6842105263157894 H_phi = -6.821210263296962e-12
Ra = 1.9125 Za = -2.6842105263157894 rot_H_z = -1.1368683772161603e-12
Ra = 1.9125 Za = -2.6842105263157894 rot_H_r = 1.2960299500264227e-11
Ra = 1.9125 Za = -2.6842105263157894 H_scalar_t = 56.31829006571619
Ra = 1.9125 Za = -2.6842105263157894 H_scalar_sv = -56.31829006571695
Ra = 1.9125 Za = -2.6842105263157894 H_scalar = -7.602807272633072e-13
Ra = 1.9125 Za = -2.6842105263157894 H_phi_t = 1769.890007142775
Ra = 1.9125 Za = -2.6842105263157894 H_phi_sv = -1769.890007142766
Ra = 1.9125 Za = -2.6842105263157894 H_phi = 8.86757334228605e-12
Ra = 2.275 Za = -2.6842105263157894 rot_H_z = 5.6843418860808015e-12
Ra = 2.275 Za = -2.6842105263157894 rot_H_r = 3.126388037344441e-12
Ra = 2.275 Za = -2.6842105263157894 H_scalar_t = 340.7999334934701
Ra = 2.275 Za = -2.6842105263157894 H_scalar_sv = -340.79993349347876
Ra = 2.275 Za = -2.6842105263157894 H_scalar = -8.640199666842818e-12
Ra = 2.275 Za = -2.6842105263157894 H_phi_t = 1092.7777383125676
Ra = 2.275 Za = -2.6842105263157894 H_phi_sv = -1092.777738312566
Ra = 2.275 Za = -2.6842105263157894 H_phi = 1.5916157281026244e-12
Ra = 2.6375 Za = -2.6842105263157894 rot_H_z = 3.637978807091713e-12
Ra = 2.6375 Za = -2.6842105263157894 rot_H_r = -7.105427357601002e-14
Ra = 2.6375 Za = -2.6842105263157894 H_scalar_t = 391.98251298861726
Ra = 2.6375 Za = -2.6842105263157894 H_scalar_sv = -391.9825129886252
Ra = 2.6375 Za = -2.6842105263157894 H_scalar = -7.958078640513122e-12
Ra = 2.6375 Za = -2.6842105263157894 H_phi_t = 648.7811376773728
Ra = 2.6375 Za = -2.6842105263157894 H_phi_sv = -648.7811376773668
Ra = 2.6375 Za = -2.6842105263157894 H_phi = 6.0254023992456496e-12
Ra = 3.0 Za = -2.6842105263157894 rot_H_z = -3.979039320256561e-12
Ra = 3.0 Za = -2.6842105263157894 rot_H_r = 2.2737367544323206e-13
Ra = 3.0 Za = -2.6842105263157894 H_scalar_t = 357.05507452115796
Ra = 3.0 Za = -2.6842105263157894 H_scalar_sv = -357.05507452115637
Ra = 3.0 Za = -2.6842105263157894 H_scalar = 1.5916157281026244e-12
Ra = 3.0 Za = -2.6842105263157894 H_phi_t = 377.67297566785834
Ra = 3.0 Za = -2.6842105263157894 H_phi_sv = -377.67297566785436
Ra = 3.0 Za = -2.6842105263157894 H_phi = 3.979039320256561e-12
Ra = 0.1 Za = -2.3684210526315788 rot_H_z = 0.0
Ra = 0.1 Za = -2.3684210526315788 rot_H_r = 1.3642420526593924e-12
Ra = 0.1 Za = -2.3684210526315788 H_scalar_t = -13464.060596373072
Ra = 0.1 Za = -2.3684210526315788 H_scalar_sv = 13464.060596373089
Ra = 0.1 Za = -2.3684210526315788 H_scalar = 1.6370904631912708e-11
Ra = 0.1 Za = -2.3684210526315788 H_phi_t = 1284.082743041571
Ra = 0.1 Za = -2.3684210526315788 H_phi_sv = -1284.0827430415718
Ra = 0.1 Za = -2.3684210526315788 H_phi = -9.094947017729282e-13
Ra = 0.4625 Za = -2.3684210526315788 rot_H_z = 3.637978807091713e-11
Ra = 0.4625 Za = -2.3684210526315788 rot_H_r = 0.0
Ra = 0.4625 Za = -2.3684210526315788 H_scalar_t = -10731.039237096233
Ra = 0.4625 Za = -2.3684210526315788 H_scalar_sv = 10731.039237096238
Ra = 0.4625 Za = -2.3684210526315788 H_scalar = 5.4569682106375694e-12
Ra = 0.4625 Za = -2.3684210526315788 H_phi_t = 5044.074447442882
Ra = 0.4625 Za = -2.3684210526315788 H_phi_sv = -5044.074447442885
Ra = 0.4625 Za = -2.3684210526315788 H_phi = -2.7284841053187847e-12
Ra = 0.825 Za = -2.3684210526315788 rot_H_z = 4.547473508864641e-12
Ra = 0.825 Za = -2.3684210526315788 rot_H_r = -3.637978807091713e-12
Ra = 0.825 Za = -2.3684210526315788 H_scalar_t = -6352.333741604757
Ra = 0.825 Za = -2.3684210526315788 H_scalar_sv = 6352.333741604747
Ra = 0.825 Za = -2.3684210526315788 H_scalar = -1.000444171950221e-11
Ra = 0.825 Za = -2.3684210526315788 H_phi_t = 6338.500395797858
Ra = 0.825 Za = -2.3684210526315788 H_phi_sv = -6338.500395797862
Ra = 0.825 Za = -2.3684210526315788 H_phi = -4.547473508864641e-12
Ra = 1.1875 Za = -2.3684210526315788 rot_H_z = -1.2505552149377763e-12
Ra = 1.1875 Za = -2.3684210526315788 rot_H_r = 0.0
Ra = 1.1875 Za = -2.3684210526315788 H_scalar_t = -2528.3735567675403
Ra = 1.1875 Za = -2.3684210526315788 H_scalar_sv = 2528.373556767545
Ra = 1.1875 Za = -2.3684210526315788 H_scalar = 4.547473508864641e-12
Ra = 1.1875 Za = -2.3684210526315788 H_phi_t = 5524.9042836849685
Ra = 1.1875 Za = -2.3684210526315788 H_phi_sv = -5524.90428368497
Ra = 1.1875 Za = -2.3684210526315788 H_phi = -1.8189894035458565e-12
Ra = 1.55 Za = -2.3684210526315788 rot_H_z = 6.821210263296962e-12
Ra = 1.55 Za = -2.3684210526315788 rot_H_r = -2.000888343900442e-11
Ra = 1.55 Za = -2.3684210526315788 H_scalar_t = -223.58783112073527
Ra = 1.55 Za = -2.3684210526315788 H_scalar_sv = 223.58783112073507
Ra = 1.55 Za = -2.3684210526315788 H_scalar = -1.9895196601282805e-13
Ra = 1.55 Za = -2.3684210526315788 H_phi_t = 3769.1497625557536
Ra = 1.55 Za = -2.3684210526315788 H_phi_sv = -3769.149762555756
Ra = 1.55 Za = -2.3684210526315788 H_phi = -2.2737367544323206e-12
Ra = 1.9125 Za = -2.3684210526315788 rot_H_z = 4.547473508864641e-13
Ra = 1.9125 Za = -2.3684210526315788 rot_H_r = 6.934897101018578e-12
Ra = 1.9125 Za = -2.3684210526315788 H_scalar_t = 638.0050193016764
Ra = 1.9125 Za = -2.3684210526315788 H_scalar_sv = -638.0050193016766
Ra = 1.9125 Za = -2.3684210526315788 H_scalar = -2.2737367544323206e-13
Ra = 1.9125 Za = -2.3684210526315788 H_phi_t = 2157.8226022937006
Ra = 1.9125 Za = -2.3684210526315788 H_phi_sv = -2157.8226022937006
Ra = 1.9125 Za = -2.3684210526315788 H_phi = 0.0
Ra = 2.275 Za = -2.3684210526315788 rot_H_z = 2.2737367544323206e-13
Ra = 2.275 Za = -2.3684210526315788 rot_H_r = 2.7284841053187847e-12
Ra = 2.275 Za = -2.3684210526315788 H_scalar_t = 751.384847479375
Ra = 2.275 Za = -2.3684210526315788 H_scalar_sv = -751.3848474793717
Ra = 2.275 Za = -2.3684210526315788 H_scalar = 3.296918293926865e-12
Ra = 2.275 Za = -2.3684210526315788 H_phi_t = 1140.899386125135
Ra = 2.275 Za = -2.3684210526315788 H_phi_sv = -1140.8993861251356
Ra = 2.275 Za = -2.3684210526315788 H_phi = -6.821210263296962e-13
Ra = 2.6375 Za = -2.3684210526315788 rot_H_z = 5.9117155615240335e-12
Ra = 2.6375 Za = -2.3684210526315788 rot_H_r = -7.44648787076585e-12
Ra = 2.6375 Za = -2.3684210526315788 H_scalar_t = 642.1833001418679
Ra = 2.6375 Za = -2.3684210526315788 H_scalar_sv = -642.1833001418676
Ra = 2.6375 Za = -2.3684210526315788 H_scalar = 3.410605131648481e-13
Ra = 2.6375 Za = -2.3684210526315788 H_phi_t = 589.9224686269341
Ra = 2.6375 Za = -2.3684210526315788 H_phi_sv = -589.9224686254543
Ra = 2.6375 Za = -2.3684210526315788 H_phi = 1.4798615666222759e-09
Ra = 3.0 Za = -2.3684210526315788 rot_H_z = -4.263256414560601e-12
Ra = 3.0 Za = -2.3684210526315788 rot_H_r = -1.9326762412674725e-12
Ra = 3.0 Za = -2.3684210526315788 H_scalar_t = 504.4347483525029
Ra = 3.0 Za = -2.3684210526315788 H_scalar_sv = -504.43474835250186
Ra = 3.0 Za = -2.3684210526315788 H_scalar = 1.0231815394945443e-12
Ra = 3.0 Za = -2.3684210526315788 H_phi_t = 299.60029600221685
Ra = 3.0 Za = -2.3684210526315788 H_phi_sv = -299.6002960022129
Ra = 3.0 Za = -2.3684210526315788 H_phi = 3.979039320256561e-12
Ra = 0.1 Za = -2.0526315789473686 rot_H_z = -2.9103830456733704e-11
Ra = 0.1 Za = -2.0526315789473686 rot_H_r = 6.366462912410498e-12
Ra = 0.1 Za = -2.0526315789473686 H_scalar_t = -25593.180183343276
Ra = 0.1 Za = -2.0526315789473686 H_scalar_sv = 25593.180183343284
Ra = 0.1 Za = -2.0526315789473686 H_scalar = 7.275957614183426e-12
Ra = 0.1 Za = -2.0526315789473686 H_phi_t = 2823.7020565976504
Ra = 0.1 Za = -2.0526315789473686 H_phi_sv = -2823.702056597652
Ra = 0.1 Za = -2.0526315789473686 H_phi = -1.3642420526593924e-12
Ra = 0.4625 Za = -2.0526315789473686 rot_H_z = -1.2599775800481439e-07
Ra = 0.4625 Za = -2.0526315789473686 rot_H_r = 1.4551915228366852e-11
Ra = 0.4625 Za = -2.0526315789473686 H_scalar_t = -18804.27116300692
Ra = 0.4625 Za = -2.0526315789473686 H_scalar_sv = 18804.271163006833
Ra = 0.4625 Za = -2.0526315789473686 H_scalar = -8.731149137020111e-11
Ra = 0.4625 Za = -2.0526315789473686 H_phi_t = 10558.62435865473
Ra = 0.4625 Za = -2.0526315789473686 H_phi_sv = -10558.624358654679
Ra = 0.4625 Za = -2.0526315789473686 H_phi = 5.093170329928398e-11
Ra = 0.825 Za = -2.0526315789473686 rot_H_z = -1.0913936421275139e-11
Ra = 0.825 Za = -2.0526315789473686 rot_H_r = 1.0913936421275139e-11
Ra = 0.825 Za = -2.0526315789473686 H_scalar_t = -9299.1428279009
Ra = 0.825 Za = -2.0526315789473686 H_scalar_sv = 9299.142827899384
Ra = 0.825 Za = -2.0526315789473686 H_scalar = -1.5152181731536984e-09
Ra = 0.825 Za = -2.0526315789473686 H_phi_t = 11754.73443681837
Ra = 0.825 Za = -2.0526315789473686 H_phi_sv = -11754.73443681838
Ra = 0.825 Za = -2.0526315789473686 H_phi = -1.0913936421275139e-11
Ra = 1.1875 Za = -2.0526315789473686 rot_H_z = -4.092726157978177e-12
Ra = 1.1875 Za = -2.0526315789473686 rot_H_r = -1.1823431123048067e-10
Ra = 1.1875 Za = -2.0526315789473686 H_scalar_t = -2331.3039566846137
Ra = 1.1875 Za = -2.0526315789473686 H_scalar_sv = 2331.3039566846064
Ra = 1.1875 Za = -2.0526315789473686 H_scalar = -7.275957614183426e-12
Ra = 1.1875 Za = -2.0526315789473686 H_phi_t = 9132.040486214644
Ra = 1.1875 Za = -2.0526315789473686 H_phi_sv = -9132.040486214659
Ra = 1.1875 Za = -2.0526315789473686 H_phi = -1.4551915228366852e-11
Ra = 1.55 Za = -2.0526315789473686 rot_H_z = -4.8203219193965197e-11
Ra = 1.55 Za = -2.0526315789473686 rot_H_r = 2.546585164964199e-11
Ra = 1.55 Za = -2.0526315789473686 H_scalar_t = 1208.8570494732967
Ra = 1.55 Za = -2.0526315789473686 H_scalar_sv = -1208.857049473311
Ra = 1.55 Za = -2.0526315789473686 H_scalar = -1.432454155292362e-11
Ra = 1.55 Za = -2.0526315789473686 H_phi_t = 5193.974825203831
Ra = 1.55 Za = -2.0526315789473686 H_phi_sv = -5193.974825203839
Ra = 1.55 Za = -2.0526315789473686 H_phi = -8.185452315956354e-12
Ra = 1.9125 Za = -2.0526315789473686 rot_H_z = -6.45741238258779e-11
Ra = 1.9125 Za = -2.0526315789473686 rot_H_r = -8.526512829121202e-12
Ra = 1.9125 Za = -2.0526315789473686 H_scalar_t = 1707.2345896023514
Ra = 1.9125 Za = -2.0526315789473686 H_scalar_sv = -1707.2345896023646
Ra = 1.9125 Za = -2.0526315789473686 H_scalar = -1.318767317570746e-11
Ra = 1.9125 Za = -2.0526315789473686 H_phi_t = 2266.5077019016926
Ra = 1.9125 Za = -2.0526315789473686 H_phi_sv = -2266.5077019016894
Ra = 1.9125 Za = -2.0526315789473686 H_phi = 3.183231456205249e-12
Ra = 2.275 Za = -2.0526315789473686 rot_H_z = -2.319211489520967e-11
Ra = 2.275 Za = -2.0526315789473686 rot_H_r = 1.8189894035458565e-12
Ra = 2.275 Za = -2.0526315789473686 H_scalar_t = 1301.8898386800097
Ra = 2.275 Za = -2.0526315789473686 H_scalar_sv = -1301.8898386800097
Ra = 2.275 Za = -2.0526315789473686 H_scalar = 0.0
Ra = 2.275 Za = -2.0526315789473686 H_phi_t = 942.984870522547
Ra = 2.275 Za = -2.0526315789473686 H_phi_sv = -942.9848705225456
Ra = 2.275 Za = -2.0526315789473686 H_phi = 1.3642420526593924e-12
Ra = 2.6375 Za = -2.0526315789473686 rot_H_z = -8.981260180007666e-12
Ra = 2.6375 Za = -2.0526315789473686 rot_H_r = 0.0
Ra = 2.6375 Za = -2.0526315789473686 H_scalar_t = 915.9200581073261
Ra = 2.6375 Za = -2.0526315789473686 H_scalar_sv = -915.9200581073355
Ra = 2.6375 Za = -2.0526315789473686 H_scalar = -9.43600753089413e-12
Ra = 2.6375 Za = -2.0526315789473686 H_phi_t = 390.64170915597265
Ra = 2.6375 Za = -2.0526315789473686 H_phi_sv = -390.64170915596975
Ra = 2.6375 Za = -2.0526315789473686 H_phi = 2.8990143619012088e-12
Ra = 3.0 Za = -2.0526315789473686 rot_H_z = 6.821210263296962e-13
Ra = 3.0 Za = -2.0526315789473686 rot_H_r = 6.821210263296962e-13
Ra = 3.0 Za = -2.0526315789473686 H_scalar_t = 645.2567674765178
Ra = 3.0 Za = -2.0526315789473686 H_scalar_sv = -645.2567674765178
Ra = 3.0 Za = -2.0526315789473686 H_scalar = 0.0
Ra = 3.0 Za = -2.0526315789473686 H_phi_t = 146.2720420891344
Ra = 3.0 Za = -2.0526315789473686 H_phi_sv = -146.2720420891348
Ra = 3.0 Za = -2.0526315789473686 H_phi = -3.979039320256561e-13
Ra = 0.1 Za = -1.736842105263158 rot_H_z = 2.9103830456733704e-11
Ra = 0.1 Za = -1.736842105263158 rot_H_r = 2.1827872842550278e-11
Ra = 0.1 Za = -1.736842105263158 H_scalar_t = -52866.607020505595
Ra = 0.1 Za = -1.736842105263158 H_scalar_sv = 52866.6070205053
Ra = 0.1 Za = -1.736842105263158 H_scalar = -2.9831426218152046e-10
Ra = 0.1 Za = -1.736842105263158 H_phi_t = 5866.737349542716
Ra = 0.1 Za = -1.736842105263158 H_phi_sv = -5866.737349542717
Ra = 0.1 Za = -1.736842105263158 H_phi = -9.094947017729282e-13
Ra = 0.4625 Za = -1.736842105263158 rot_H_z = -2.3283064365386963e-10
Ra = 0.4625 Za = -1.736842105263158 rot_H_r = 3.245077095925808e-09
Ra = 0.4625 Za = -1.736842105263158 H_scalar_t = -34676.481907457935
Ra = 0.4625 Za = -1.736842105263158 H_scalar_sv = 34676.48190745783
Ra = 0.4625 Za = -1.736842105263158 H_scalar = -1.0186340659856796e-10
Ra = 0.4625 Za = -1.736842105263158 H_phi_t = 25561.346417909506
Ra = 0.4625 Za = -1.736842105263158 H_phi_sv = -25561.346417909426
Ra = 0.4625 Za = -1.736842105263158 H_phi = 8.003553375601768e-11
Ra = 0.825 Za = -1.736842105263158 rot_H_z = -2.510205376893282e-10
Ra = 0.825 Za = -1.736842105263158 rot_H_r = 2.9103830456733704e-11
Ra = 0.825 Za = -1.736842105263158 H_scalar_t = -12635.231203491214
Ra = 0.825 Za = -1.736842105263158 H_scalar_sv = 12635.231203491197
Ra = 0.825 Za = -1.736842105263158 H_scalar = -1.6370904631912708e-11
Ra = 0.825 Za = -1.736842105263158 H_phi_t = 21955.841883486908
Ra = 0.825 Za = -1.736842105263158 H_phi_sv = -21955.841883486926
Ra = 0.825 Za = -1.736842105263158 H_phi = -1.8189894035458565e-11
Ra = 1.1875 Za = -1.736842105263158 rot_H_z = 4.4565240386873484e-11
Ra = 1.1875 Za = -1.736842105263158 rot_H_r = 1.418811734765768e-10
Ra = 1.1875 Za = -1.736842105263158 H_scalar_t = -888.7900305444816
Ra = 1.1875 Za = -1.736842105263158 H_scalar_sv = 888.7900305444696
Ra = 1.1875 Za = -1.736842105263158 H_scalar = -1.2050804798491299e-11
Ra = 1.1875 Za = -1.736842105263158 H_phi_t = 15401.625951548387
Ra = 1.1875 Za = -1.736842105263158 H_phi_sv = -15401.625951548434
Ra = 1.1875 Za = -1.736842105263158 H_phi = -4.729372449219227e-11
Ra = 1.55 Za = -1.736842105263158 rot_H_z = 1.1641532182693481e-10
Ra = 1.55 Za = -1.736842105263158 rot_H_r = 3.728928277269006e-11
Ra = 1.55 Za = -1.736842105263158 H_scalar_t = 5231.190485586733
Ra = 1.55 Za = -1.736842105263158 H_scalar_sv = -5231.190485583477
Ra = 1.55 Za = -1.736842105263158 H_scalar = 3.255991032347083e-09
Ra = 1.55 Za = -1.736842105263158 H_phi_t = 6352.5000213263365
Ra = 1.55 Za = -1.736842105263158 H_phi_sv = -6352.500021326359
Ra = 1.55 Za = -1.736842105263158 H_phi = -2.2737367544323206e-11
Ra = 1.9125 Za = -1.736842105263158 rot_H_z = -9.094947017729282e-12
Ra = 1.9125 Za = -1.736842105263158 rot_H_r = -1.7280399333685637e-11
Ra = 1.9125 Za = -1.736842105263158 H_scalar_t = 3238.6749435005872
Ra = 1.9125 Za = -1.736842105263158 H_scalar_sv = -3238.674943500579
Ra = 1.9125 Za = -1.736842105263158 H_scalar = 8.185452315956354e-12
Ra = 1.9125 Za = -1.736842105263158 H_phi_t = 1382.7433854206329
Ra = 1.9125 Za = -1.736842105263158 H_phi_sv = -1382.743385420631
Ra = 1.9125 Za = -1.736842105263158 H_phi = 1.8189894035458565e-12
Ra = 2.275 Za = -1.736842105263158 rot_H_z = 5.002220859751105e-12
Ra = 2.275 Za = -1.736842105263158 rot_H_r = 3.637978807091713e-12
Ra = 2.275 Za = -1.736842105263158 H_scalar_t = 1828.5414328382055
Ra = 2.275 Za = -1.736842105263158 H_scalar_sv = -1828.541432838196
Ra = 2.275 Za = -1.736842105263158 H_scalar = 9.549694368615746e-12
Ra = 2.275 Za = -1.736842105263158 H_phi_t = 333.2425405917747
Ra = 2.275 Za = -1.736842105263158 H_phi_sv = -333.2425405917732
Ra = 2.275 Za = -1.736842105263158 H_phi = 1.4779288903810084e-12
Ra = 2.6375 Za = -1.736842105263158 rot_H_z = 3.751665644813329e-12
Ra = 2.6375 Za = -1.736842105263158 rot_H_r = 4.547473508864641e-12
Ra = 2.6375 Za = -1.736842105263158 H_scalar_t = 1129.5064718007739
Ra = 2.6375 Za = -1.736842105263158 H_scalar_sv = -1129.506471800774
Ra = 2.6375 Za = -1.736842105263158 H_scalar = -2.2737367544323206e-13
Ra = 2.6375 Za = -1.736842105263158 H_phi_t = 24.17704228573936
Ra = 2.6375 Za = -1.736842105263158 H_phi_sv = -24.177042285738935
Ra = 2.6375 Za = -1.736842105263158 H_phi = 4.263256414560601e-13
Ra = 3.0 Za = -1.736842105263158 rot_H_z = -8.810729923425242e-13
Ra = 3.0 Za = -1.736842105263158 rot_H_r = 3.069544618483633e-12
Ra = 3.0 Za = -1.736842105263158 H_scalar_t = 741.002193098111
Ra = 3.0 Za = -1.736842105263158 H_scalar_sv = -741.0021930981179
Ra = 3.0 Za = -1.736842105263158 H_scalar = -6.934897101018578e-12
Ra = 3.0 Za = -1.736842105263158 H_phi_t = -81.6972068350634
Ra = 3.0 Za = -1.736842105263158 H_phi_sv = 81.69720683506489
Ra = 3.0 Za = -1.736842105263158 H_phi = 1.4921397450962104e-12
Ra = 0.1 Za = -1.4210526315789473 rot_H_z = -2.6193447411060333e-10
Ra = 0.1 Za = -1.4210526315789473 rot_H_r = 1.0477378964424133e-09
Ra = 0.1 Za = -1.4210526315789473 H_scalar_t = -71289.87501962863
Ra = 0.1 Za = -1.4210526315789473 H_scalar_sv = 71289.87501962869
Ra = 0.1 Za = -1.4210526315789473 H_scalar = 5.820766091346741e-11
Ra = 0.1 Za = -1.4210526315789473 H_phi_t = -4066.683595818941
Ra = 0.1 Za = -1.4210526315789473 H_phi_sv = 4066.6835958189376
Ra = 0.1 Za = -1.4210526315789473 H_phi = -3.183231456205249e-12
Ra = 0.4625 Za = -1.4210526315789473 rot_H_z = 5.820766091346741e-11
Ra = 0.4625 Za = -1.4210526315789473 rot_H_r = -1.1932570487260818e-09
Ra = 0.4625 Za = -1.4210526315789473 H_scalar_t = -45600.1428601088
Ra = 0.4625 Za = -1.4210526315789473 H_scalar_sv = 45600.142860109205
Ra = 0.4625 Za = -1.4210526315789473 H_scalar = 4.0745362639427185e-10
Ra = 0.4625 Za = -1.4210526315789473 H_phi_t = -44904.20689678384
Ra = 0.4625 Za = -1.4210526315789473 H_phi_sv = -74097.03787661574
Ra = 0.4625 Za = -1.4210526315789473 H_phi = -119001.24477339958
Ra = 0.825 Za = -1.4210526315789473 rot_H_z = -3.383320290595293e-10
Ra = 0.825 Za = -1.4210526315789473 rot_H_r = -1.5425030142068863e-09
Ra = 0.825 Za = -1.4210526315789473 H_scalar_t = -13537.551050694177
Ra = 0.825 Za = -1.4210526315789473 H_scalar_sv = 13537.551050694165
Ra = 0.825 Za = -1.4210526315789473 H_scalar = -1.2732925824820995e-11
Ra = 0.825 Za = -1.4210526315789473 H_phi_t = -29756.83473469598
Ra = 0.825 Za = -1.4210526315789473 H_phi_sv = -36955.98430493456
Ra = 0.825 Za = -1.4210526315789473 H_phi = -66712.81903963054
Ra = 1.1875 Za = -1.4210526315789473 rot_H_z = -3.5652192309498787e-10
Ra = 1.1875 Za = -1.4210526315789473 rot_H_r = 3.822788130491972e-08
Ra = 1.1875 Za = -1.4210526315789473 H_scalar_t = 98.61012995435522
Ra = 1.1875 Za = -1.4210526315789473 H_scalar_sv = -98.61012995436658
Ra = 1.1875 Za = -1.4210526315789473 H_scalar = -1.1368683772161603e-11
Ra = 1.1875 Za = -1.4210526315789473 H_phi_t = -20859.409898819667
Ra = 1.1875 Za = -1.4210526315789473 H_phi_sv = -25488.443328713183
Ra = 1.1875 Za = -1.4210526315789473 H_phi = -46347.85322753285
Ra = 1.55 Za = -1.4210526315789473 rot_H_z = 2.0423613023012877e-08
Ra = 1.55 Za = -1.4210526315789473 rot_H_r = -1.2441887520253658e-09
Ra = 1.55 Za = -1.4210526315789473 H_scalar_t = 10612.559174235026
Ra = 1.55 Za = -1.4210526315789473 H_scalar_sv = -10612.559174236965
Ra = 1.55 Za = -1.4210526315789473 H_scalar = -1.939042704179883e-09
Ra = 1.55 Za = -1.4210526315789473 H_phi_t = -5908.709647151699
Ra = 1.55 Za = -1.4210526315789473 H_phi_sv = 5908.709647151705
Ra = 1.55 Za = -1.4210526315789473 H_phi = 6.366462912410498e-12
Ra = 1.9125 Za = -1.4210526315789473 rot_H_z = -5.411493475548923e-11
Ra = 1.9125 Za = -1.4210526315789473 rot_H_r = -8.549250196665525e-11
Ra = 1.9125 Za = -1.4210526315789473 H_scalar_t = 3840.4243611244165
Ra = 1.9125 Za = -1.4210526315789473 H_scalar_sv = -3840.424361124426
Ra = 1.9125 Za = -1.4210526315789473 H_scalar = -9.549694368615746e-12
Ra = 1.9125 Za = -1.4210526315789473 H_phi_t = -1077.055704836725
Ra = 1.9125 Za = -1.4210526315789473 H_phi_sv = 1077.0557048379203
Ra = 1.9125 Za = -1.4210526315789473 H_phi = 1.195303411805071e-09
Ra = 2.275 Za = -1.4210526315789473 rot_H_z = 2.4442670110147446e-12
Ra = 2.275 Za = -1.4210526315789473 rot_H_r = 2.091837814077735e-11
Ra = 2.275 Za = -1.4210526315789473 H_scalar_t = 1982.7156955637063
Ra = 2.275 Za = -1.4210526315789473 H_scalar_sv = -1982.7156955637133
Ra = 2.275 Za = -1.4210526315789473 H_scalar = -7.048583938740194e-12
Ra = 2.275 Za = -1.4210526315789473 H_phi_t = -620.40940018523
Ra = 2.275 Za = -1.4210526315789473 H_phi_sv = 620.409400185223
Ra = 2.275 Za = -1.4210526315789473 H_phi = -6.934897101018578e-12
Ra = 2.6375 Za = -1.4210526315789473 rot_H_z = 1.126153392760898e-09
Ra = 2.6375 Za = -1.4210526315789473 rot_H_r = 6.821210263296962e-13
Ra = 2.6375 Za = -1.4210526315789473 H_scalar_t = 1180.3282649360506
Ra = 2.6375 Za = -1.4210526315789473 H_scalar_sv = -1180.3282649360524
Ra = 2.6375 Za = -1.4210526315789473 H_scalar = -1.8189894035458565e-12
Ra = 2.6375 Za = -1.4210526315789473 H_phi_t = -452.9571087436387
Ra = 2.6375 Za = -1.4210526315789473 H_phi_sv = 452.95710874363783
Ra = 2.6375 Za = -1.4210526315789473 H_phi = -8.526512829121202e-13
Ra = 3.0 Za = -1.4210526315789473 rot_H_z = 6.394884621840902e-13
Ra = 3.0 Za = -1.4210526315789473 rot_H_r = 2.1600499167107046e-12
Ra = 3.0 Za = -1.4210526315789473 H_scalar_t = 754.7174152156135
Ra = 3.0 Za = -1.4210526315789473 H_scalar_sv = -754.7174152156134
Ra = 3.0 Za = -1.4210526315789473 H_scalar = 1.1368683772161603e-13
Ra = 3.0 Za = -1.4210526315789473 H_phi_t = -354.0565348991335
Ra = 3.0 Za = -1.4210526315789473 H_phi_sv = 354.0565348991319
Ra = 3.0 Za = -1.4210526315789473 H_phi = -1.5916157281026244e-12
Ra = 0.1 Za = -1.105263157894737 rot_H_z = -2.6193447411060333e-10
Ra = 0.1 Za = -1.105263157894737 rot_H_r = -7.894414011389017e-10
Ra = 0.1 Za = -1.105263157894737 H_scalar_t = -35895.39537325809
Ra = 0.1 Za = -1.105263157894737 H_scalar_sv = 35895.3953732581
Ra = 0.1 Za = -1.105263157894737 H_scalar = 7.275957614183426e-12
Ra = 0.1 Za = -1.105263157894737 H_phi_t = -4363.163608928125
Ra = 0.1 Za = -1.105263157894737 H_phi_sv = 4363.163608927823
Ra = 0.1 Za = -1.105263157894737 H_phi = -3.019522409886122e-10
Ra = 0.4625 Za = -1.105263157894737 rot_H_z = -2.5684130378067493e-09
Ra = 0.4625 Za = -1.105263157894737 rot_H_r = 3.637978807091713e-11
Ra = 0.4625 Za = -1.105263157894737 H_scalar_t = -24787.036655120333
Ra = 0.4625 Za = -1.105263157894737 H_scalar_sv = 24787.036655094453
Ra = 0.4625 Za = -1.105263157894737 H_scalar = -2.5880581233650446e-08
Ra = 0.4625 Za = -1.105263157894737 H_phi_t = -16413.304950434693
Ra = 0.4625 Za = -1.105263157894737 H_phi_sv = -102587.93982296028
Ra = 0.4625 Za = -1.105263157894737 H_phi = -119001.24477339498
Ra = 0.825 Za = -1.105263157894737 rot_H_z = -1.4006218407303095e-10
Ra = 0.825 Za = -1.105263157894737 rot_H_r = 3.047171048820019e-08
Ra = 0.825 Za = -1.105263157894737 H_scalar_t = -10519.689746127224
Ra = 0.825 Za = -1.105263157894737 H_scalar_sv = 10519.689746127207
Ra = 0.825 Za = -1.105263157894737 H_scalar = -1.6370904631912708e-11
Ra = 0.825 Za = -1.105263157894737 H_phi_t = -16784.351571463187
Ra = 0.825 Za = -1.105263157894737 H_phi_sv = -49928.46746816732
Ra = 0.825 Za = -1.105263157894737 H_phi = -66712.8190396305
Ra = 1.1875 Za = -1.105263157894737 rot_H_z = 8.640199666842818e-11
Ra = 1.1875 Za = -1.105263157894737 rot_H_r = -2.255546860396862e-10
Ra = 1.1875 Za = -1.105263157894737 H_scalar_t = -1424.5109871212114
Ra = 1.1875 Za = -1.105263157894737 H_scalar_sv = 1424.510987121236
Ra = 1.1875 Za = -1.105263157894737 H_scalar = 2.4556356947869062e-11
Ra = 1.1875 Za = -1.105263157894737 H_phi_t = -12636.652826071138
Ra = 1.1875 Za = -1.105263157894737 H_phi_sv = -33711.20040146164
Ra = 1.1875 Za = -1.105263157894737 H_phi = -46347.853227532774
Ra = 1.55 Za = -1.105263157894737 rot_H_z = 1.1130396160297096e-08
Ra = 1.55 Za = -1.105263157894737 rot_H_r = 9.399627742823213e-10
Ra = 1.55 Za = -1.105263157894737 H_scalar_t = 2911.6132290556793
Ra = 1.55 Za = -1.105263157894737 H_scalar_sv = -2911.6132290480637
Ra = 1.55 Za = -1.105263157894737 H_scalar = 7.615653885295615e-09
Ra = 1.55 Za = -1.105263157894737 H_phi_t = -6775.806558049017
Ra = 1.55 Za = -1.105263157894737 H_phi_sv = 6775.8065580490065
Ra = 1.55 Za = -1.105263157894737 H_phi = -1.0913936421275139e-11
Ra = 1.9125 Za = -1.105263157894737 rot_H_z = -4.638422979041934e-11
Ra = 1.9125 Za = -1.105263157894737 rot_H_r = 7.412381819449365e-11
Ra = 1.9125 Za = -1.105263157894737 H_scalar_t = 2573.587604896033
Ra = 1.9125 Za = -1.105263157894737 H_scalar_sv = -2573.5876048967834
Ra = 1.9125 Za = -1.105263157894737 H_scalar = -7.503331289626658e-10
Ra = 1.9125 Za = -1.105263157894737 H_phi_t = -2865.6293035258864
Ra = 1.9125 Za = -1.105263157894737 H_phi_sv = 2865.6293035259164
Ra = 1.9125 Za = -1.105263157894737 H_phi = 3.001332515850663e-11
Ra = 2.275 Za = -1.105263157894737 rot_H_z = 8.640199666842818e-12
Ra = 2.275 Za = -1.105263157894737 rot_H_r = -3.637978807091713e-12
Ra = 2.275 Za = -1.105263157894737 H_scalar_t = 1634.0598677056794
Ra = 2.275 Za = -1.105263157894737 H_scalar_sv = -1634.0598677056814
Ra = 2.275 Za = -1.105263157894737 H_scalar = -2.0463630789890885e-12
Ra = 2.275 Za = -1.105263157894737 H_phi_t = -1471.4013891073944
Ra = 2.275 Za = -1.105263157894737 H_phi_sv = 1471.4013891073885
Ra = 2.275 Za = -1.105263157894737 H_phi = -5.9117155615240335e-12
Ra = 2.6375 Za = -1.105263157894737 rot_H_z = 3.296918293926865e-12
Ra = 2.6375 Za = -1.105263157894737 rot_H_r = -1.8189894035458565e-12
Ra = 2.6375 Za = -1.105263157894737 H_scalar_t = 1035.467358619117
Ra = 2.6375 Za = -1.105263157894737 H_scalar_sv = -1035.4673586191166
Ra = 2.6375 Za = -1.105263157894737 H_scalar = 4.547473508864641e-13
Ra = 2.6375 Za = -1.105263157894737 H_phi_t = -906.9859845530742
Ra = 2.6375 Za = -1.105263157894737 H_phi_sv = 906.9859845530741
Ra = 2.6375 Za = -1.105263157894737 H_phi = -1.1368683772161603e-13
Ra = 3.0 Za = -1.105263157894737 rot_H_z = 1.3073986337985843e-11
Ra = 3.0 Za = -1.105263157894737 rot_H_r = 8.86757334228605e-12
Ra = 3.0 Za = -1.105263157894737 H_scalar_t = 674.2192485926957
Ra = 3.0 Za = -1.105263157894737 H_scalar_sv = -674.2192485926942
Ra = 3.0 Za = -1.105263157894737 H_scalar = 1.5916157281026244e-12
Ra = 3.0 Za = -1.105263157894737 H_phi_t = -618.9797176468588
Ra = 3.0 Za = -1.105263157894737 H_phi_sv = 618.9797176468549
Ra = 3.0 Za = -1.105263157894737 H_phi = -3.979039320256561e-12
Ra = 0.1 Za = -0.7894736842105265 rot_H_z = 9.38598532229662e-09
Ra = 0.1 Za = -0.7894736842105265 rot_H_r = -3.5288394428789616e-10
Ra = 0.1 Za = -0.7894736842105265 H_scalar_t = -17006.51816112154
Ra = 0.1 Za = -0.7894736842105265 H_scalar_sv = 17006.518161121567
Ra = 0.1 Za = -0.7894736842105265 H_scalar = 2.546585164964199e-11
Ra = 0.1 Za = -0.7894736842105265 H_phi_t = -2001.827439857138
Ra = 0.1 Za = -0.7894736842105265 H_phi_sv = 2001.8274398571193
Ra = 0.1 Za = -0.7894736842105265 H_phi = -1.864464138634503e-11
Ra = 0.4625 Za = -0.7894736842105265 rot_H_z = -1.348598743788898e-08
Ra = 0.4625 Za = -0.7894736842105265 rot_H_r = 6.730260793119669e-10
Ra = 0.4625 Za = -0.7894736842105265 H_scalar_t = -12888.830282660312
Ra = 0.4625 Za = -0.7894736842105265 H_scalar_sv = 12888.830282660318
Ra = 0.4625 Za = -0.7894736842105265 H_scalar = 5.4569682106375694e-12
Ra = 0.4625 Za = -0.7894736842105265 H_phi_t = -7736.04037597219
Ra = 0.4625 Za = -0.7894736842105265 H_phi_sv = -111265.20439742276
Ra = 0.4625 Za = -0.7894736842105265 H_phi = -119001.24477339495
Ra = 0.825 Za = -0.7894736842105265 rot_H_z = 5.275069270282984e-11
Ra = 0.825 Za = -0.7894736842105265 rot_H_r = -2.582964953035116e-10
Ra = 0.825 Za = -0.7894736842105265 H_scalar_t = -6731.833217223971
Ra = 0.825 Za = -0.7894736842105265 H_scalar_sv = 6731.833217218723
Ra = 0.825 Za = -0.7894736842105265 H_scalar = -5.247784429229796e-09
Ra = 0.825 Za = -0.7894736842105265 H_phi_t = -9432.781775458046
Ra = 0.825 Za = -0.7894736842105265 H_phi_sv = -57280.03726417242
Ra = 0.825 Za = -0.7894736842105265 H_phi = -66712.81903963047
Ra = 1.1875 Za = -0.7894736842105265 rot_H_z = -2.6261659513693303e-11
Ra = 1.1875 Za = -0.7894736842105265 rot_H_r = -1.0913936421275139e-11
Ra = 1.1875 Za = -0.7894736842105265 H_scalar_t = -1847.2157476381374
Ra = 1.1875 Za = -0.7894736842105265 H_scalar_sv = 1847.2157476381255
Ra = 1.1875 Za = -0.7894736842105265 H_scalar = -1.1823431123048067e-11
Ra = 1.1875 Za = -0.7894736842105265 H_phi_t = -8087.347582987957
Ra = 1.1875 Za = -0.7894736842105265 H_phi_sv = -38260.5056445448
Ra = 1.1875 Za = -0.7894736842105265 H_phi = -46347.85322753276
Ra = 1.55 Za = -0.7894736842105265 rot_H_z = 9.987161320168525e-09
Ra = 1.55 Za = -0.7894736842105265 rot_H_r = 6.371010385919362e-10
Ra = 1.55 Za = -0.7894736842105265 H_scalar_t = 739.3629672941859
Ra = 1.55 Za = -0.7894736842105265 H_scalar_sv = -739.3629672941825
Ra = 1.55 Za = -0.7894736842105265 H_scalar = 3.410605131648481e-12
Ra = 1.55 Za = -0.7894736842105265 H_phi_t = -5486.0761213271335
Ra = 1.55 Za = -0.7894736842105265 H_phi_sv = 5486.076121327105
Ra = 1.55 Za = -0.7894736842105265 H_phi = -2.8194335754960775e-11
Ra = 1.9125 Za = -0.7894736842105265 rot_H_z = -5.093170329928398e-11
Ra = 1.9125 Za = -0.7894736842105265 rot_H_r = -8.522917482878256e-09
Ra = 1.9125 Za = -0.7894736842105265 H_scalar_t = 1311.269475676717
Ra = 1.9125 Za = -0.7894736842105265 H_scalar_sv = -1311.269475676719
Ra = 1.9125 Za = -0.7894736842105265 H_scalar = -1.8189894035458565e-12
Ra = 1.9125 Za = -0.7894736842105265 H_phi_t = -3243.0349817066235
Ra = 1.9125 Za = -0.7894736842105265 H_phi_sv = 3243.034981706651
Ra = 1.9125 Za = -0.7894736842105265 H_phi = 2.7284841053187847e-11
Ra = 2.275 Za = -0.7894736842105265 rot_H_z = 1.8189894035458565e-11
Ra = 2.275 Za = -0.7894736842105265 rot_H_r = 1.318767317570746e-11
Ra = 2.275 Za = -0.7894736842105265 H_scalar_t = 1081.2058700020623
Ra = 2.275 Za = -0.7894736842105265 H_scalar_sv = -1081.2058700020618
Ra = 2.275 Za = -0.7894736842105265 H_scalar = 4.547473508864641e-13
Ra = 2.275 Za = -0.7894736842105265 H_phi_t = -1935.5915335252005
Ra = 2.275 Za = -0.7894736842105265 H_phi_sv = 1935.591533525193
Ra = 2.275 Za = -0.7894736842105265 H_phi = -7.503331289626658e-12
Ra = 2.6375 Za = -0.7894736842105265 rot_H_z = -2.8309159461059608e-09
Ra = 2.6375 Za = -0.7894736842105265 rot_H_r = -1.0231815394945443e-12
Ra = 2.6375 Za = -0.7894736842105265 H_scalar_t = 763.1392908081568
Ra = 2.6375 Za = -0.7894736842105265 H_scalar_sv = -763.1392908081567
Ra = 2.6375 Za = -0.7894736842105265 H_scalar = 1.1368683772161603e-13
Ra = 2.6375 Za = -0.7894736842105265 H_phi_t = -1232.5316923365888
Ra = 2.6375 Za = -0.7894736842105265 H_phi_sv = 1232.5316923365863
Ra = 2.6375 Za = -0.7894736842105265 H_phi = -2.5011104298755527e-12
Ra = 3.0 Za = -0.7894736842105265 rot_H_z = 7.958078640513122e-13
Ra = 3.0 Za = -0.7894736842105265 rot_H_r = -3.410605131648481e-13
Ra = 3.0 Za = -0.7894736842105265 H_scalar_t = 518.9235060222092
Ra = 3.0 Za = -0.7894736842105265 H_scalar_sv = -518.9235060222109
Ra = 3.0 Za = -0.7894736842105265 H_scalar = -1.7053025658242404e-12
Ra = 3.0 Za = -0.7894736842105265 H_phi_t = -830.7610796061782
Ra = 3.0 Za = -0.7894736842105265 H_phi_sv = 830.76107960618
Ra = 3.0 Za = -0.7894736842105265 H_phi = 1.8189894035458565e-12
Ra = 0.1 Za = -0.47368421052631593 rot_H_z = -2.837623469531536e-10
Ra = 0.1 Za = -0.47368421052631593 rot_H_r = -7.435119186993688e-11
Ra = 0.1 Za = -0.47368421052631593 H_scalar_t = -7824.894240198837
Ra = 0.1 Za = -0.47368421052631593 H_scalar_sv = 7824.894240198861
Ra = 0.1 Za = -0.47368421052631593 H_scalar = 2.3646862246096134e-11
Ra = 0.1 Za = -0.47368421052631593 H_phi_t = -1075.9626959162106
Ra = 0.1 Za = -0.47368421052631593 H_phi_sv = 1075.9626959161913
Ra = 0.1 Za = -0.47368421052631593 H_phi = -1.9326762412674725e-11
Ra = 0.4625 Za = -0.47368421052631593 rot_H_z = -8.185452315956354e-11
Ra = 0.4625 Za = -0.47368421052631593 rot_H_r = -5.311449058353901e-10
Ra = 0.4625 Za = -0.47368421052631593 H_scalar_t = -6241.070471484699
Ra = 0.4625 Za = -0.47368421052631593 H_scalar_sv = 6241.070471484738
Ra = 0.4625 Za = -0.47368421052631593 H_scalar = 3.9108272176235914e-11
Ra = 0.4625 Za = -0.47368421052631593 H_phi_t = -4369.350337543872
Ra = 0.4625 Za = -0.47368421052631593 H_phi_sv = -114631.8944358512
Ra = 0.4625 Za = -0.47368421052631593 H_phi = -119001.24477339507
Ra = 0.825 Za = -0.47368421052631593 rot_H_z = -1.6370904631912708e-10
Ra = 0.825 Za = -0.47368421052631593 rot_H_r = -3.0104274628683925e-10
Ra = 0.825 Za = -0.47368421052631593 H_scalar_t = -3640.672152174229
Ra = 0.825 Za = -0.47368421052631593 H_scalar_sv = 3640.6721521742184
Ra = 0.825 Za = -0.47368421052631593 H_scalar = -1.0459189070388675e-11
Ra = 0.825 Za = -0.47368421052631593 H_phi_t = -5888.679617326502
Ra = 0.825 Za = -0.47368421052631593 H_phi_sv = -60824.13942230844
Ra = 0.825 Za = -0.47368421052631593 H_phi = -66712.81903963494
Ra = 1.1875 Za = -0.47368421052631593 rot_H_z = -4.5929482439532876e-11
Ra = 1.1875 Za = -0.47368421052631593 rot_H_r = 1.2005330063402653e-10
Ra = 1.1875 Za = -0.47368421052631593 H_scalar_t = -1324.9876080090578
Ra = 1.1875 Za = -0.47368421052631593 H_scalar_sv = 1324.9876080090567
Ra = 1.1875 Za = -0.47368421052631593 H_scalar = -1.1368683772161603e-12
Ra = 1.1875 Za = -0.47368421052631593 H_phi_t = -5664.531686387485
Ra = 1.1875 Za = -0.47368421052631593 H_phi_sv = -40683.32154115176
Ra = 1.1875 Za = -0.47368421052631593 H_phi = -46347.85322753924
Ra = 1.55 Za = -0.47368421052631593 rot_H_z = 8.275492291431874e-09
Ra = 1.55 Za = -0.47368421052631593 rot_H_r = -4.001776687800884e-10
Ra = 1.55 Za = -0.47368421052631593 H_scalar_t = 65.89718800291497
Ra = 1.55 Za = -0.47368421052631593 H_scalar_sv = -65.89718800291121
Ra = 1.55 Za = -0.47368421052631593 H_scalar = 3.765876499528531e-12
Ra = 1.55 Za = -0.47368421052631593 H_phi_t = -4470.383342016857
Ra = 1.55 Za = -0.47368421052631593 H_phi_sv = 4470.383342016827
Ra = 1.55 Za = -0.47368421052631593 H_phi = -3.001332515850663e-11
Ra = 1.9125 Za = -0.47368421052631593 rot_H_z = -6.980371836107224e-11
Ra = 1.9125 Za = -0.47368421052631593 rot_H_r = -2.0179413695586845e-11
Ra = 1.9125 Za = -0.47368421052631593 H_scalar_t = 565.6545266952606
Ra = 1.9125 Za = -0.47368421052631593 H_scalar_sv = -565.6545266952645
Ra = 1.9125 Za = -0.47368421052631593 H_scalar = -3.865352482534945e-12
Ra = 1.9125 Za = -0.47368421052631593 H_phi_t = -3136.2307565530637
Ra = 1.9125 Za = -0.47368421052631593 H_phi_sv = 3136.2307565531005
Ra = 1.9125 Za = -0.47368421052631593 H_phi = 3.6834535421803594e-11
Ra = 2.275 Za = -0.47368421052631593 rot_H_z = 1.7280399333685637e-11
Ra = 2.275 Za = -0.47368421052631593 rot_H_r = -6.821210263296962e-13
Ra = 2.275 Za = -0.47368421052631593 H_scalar_t = 581.2091045601842
Ra = 2.275 Za = -0.47368421052631593 H_scalar_sv = -581.209104560178
Ra = 2.275 Za = -0.47368421052631593 H_scalar = 6.139089236967266e-12
Ra = 2.275 Za = -0.47368421052631593 H_phi_t = -2105.4136552045106
Ra = 2.275 Za = -0.47368421052631593 H_phi_sv = 2105.4136552045043
Ra = 2.275 Za = -0.47368421052631593 H_phi = -6.366462912410498e-12
Ra = 2.6375 Za = -0.47368421052631593 rot_H_z = 2.8421709430404007e-12
Ra = 2.6375 Za = -0.47368421052631593 rot_H_r = -1.7053025658242404e-13
Ra = 2.6375 Za = -0.47368421052631593 H_scalar_t = 452.6578048274336
Ra = 2.6375 Za = -0.47368421052631593 H_scalar_sv = -452.65780482743355
Ra = 2.6375 Za = -0.47368421052631593 H_scalar = 5.684341886080802e-14
Ra = 2.6375 Za = -0.47368421052631593 H_phi_t = -1415.4930766961868
Ra = 2.6375 Za = -0.47368421052631593 H_phi_sv = 1415.4930766961866
Ra = 2.6375 Za = -0.47368421052631593 H_phi = -2.2737367544323206e-13
Ra = 3.0 Za = -0.47368421052631593 rot_H_z = 1.3642420526593924e-12
Ra = 3.0 Za = -0.47368421052631593 rot_H_r = -2.0463630789890885e-12
Ra = 3.0 Za = -0.47368421052631593 H_scalar_t = 321.78014111428183
Ra = 3.0 Za = -0.47368421052631593 H_scalar_sv = -321.78014111428456
Ra = 3.0 Za = -0.47368421052631593 H_scalar = -2.7284841053187847e-12
Ra = 3.0 Za = -0.47368421052631593 H_phi_t = -969.3784375411549
Ra = 3.0 Za = -0.47368421052631593 H_phi_sv = 969.3784375411594
Ra = 3.0 Za = -0.47368421052631593 H_phi = 4.547473508864641e-12
Ra = 0.1 Za = -0.1578947368421053 rot_H_z = -1.7280399333685637e-10
Ra = 0.1 Za = -0.1578947368421053 rot_H_r = -2.9541524781961925e-10
Ra = 0.1 Za = -0.1578947368421053 H_scalar_t = -2290.6022720478495
Ra = 0.1 Za = -0.1578947368421053 H_scalar_sv = 2290.6022720478686
Ra = 0.1 Za = -0.1578947368421053 H_scalar = 1.9099388737231493e-11
Ra = 0.1 Za = -0.1578947368421053 H_phi_t = -752.577199917823
Ra = 0.1 Za = -0.1578947368421053 H_phi_sv = 752.5771999178028
Ra = 0.1 Za = -0.1578947368421053 H_phi = -2.0236257114447653e-11
Ra = 0.4625 Za = -0.1578947368421053 rot_H_z = 2.801243681460619e-10
Ra = 0.4625 Za = -0.1578947368421053 rot_H_r = -6.139089236967266e-12
Ra = 0.4625 Za = -0.1578947368421053 H_scalar_t = -1867.8844748930485
Ra = 0.4625 Za = -0.1578947368421053 H_scalar_sv = 1867.8844748930824
Ra = 0.4625 Za = -0.1578947368421053 H_scalar = 3.387867764104158e-11
Ra = 0.4625 Za = -0.1578947368421053 H_phi_t = -3142.4650793845594
Ra = 0.4625 Za = -0.1578947368421053 H_phi_sv = -115858.77969402276
Ra = 0.4625 Za = -0.1578947368421053 H_phi = -119001.24477340732
Ra = 0.825 Za = -0.1578947368421053 rot_H_z = 3.183231456205249e-11
Ra = 0.825 Za = -0.1578947368421053 rot_H_r = -6.093614501878619e-11
Ra = 0.825 Za = -0.1578947368421053 H_scalar_t = -1145.0250792153113
Ra = 0.825 Za = -0.1578947368421053 H_scalar_sv = 1145.025079215301
Ra = 0.825 Za = -0.1578947368421053 H_scalar = -1.0231815394945443e-11
Ra = 0.825 Za = -0.1578947368421053 H_phi_t = -4473.487303624894
Ra = 0.825 Za = -0.1578947368421053 H_phi_sv = -62239.33173600558
Ra = 0.825 Za = -0.1578947368421053 H_phi = -66712.81903963047
Ra = 1.1875 Za = -0.1578947368421053 rot_H_z = -2.546585164964199e-11
Ra = 1.1875 Za = -0.1578947368421053 rot_H_r = 2.944489096989855e-10
Ra = 1.1875 Za = -0.1578947368421053 H_scalar_t = -466.04473657181467
Ra = 1.1875 Za = -0.1578947368421053 H_scalar_sv = 466.0447365718046
Ra = 1.1875 Za = -0.1578947368421053 H_scalar = -1.0061285138363019e-11
Ra = 1.1875 Za = -0.1578947368421053 H_phi_t = -4613.732206417989
Ra = 1.1875 Za = -0.1578947368421053 H_phi_sv = -41734.12102111451
Ra = 1.1875 Za = -0.1578947368421053 H_phi = -46347.8532275325
Ra = 1.55 Za = -0.1578947368421053 rot_H_z = 1.5377167983388063e-08
Ra = 1.55 Za = -0.1578947368421053 rot_H_r = 1.68768110597739e-09
Ra = 1.55 Za = -0.1578947368421053 H_scalar_t = -29.73313691636225
Ra = 1.55 Za = -0.1578947368421053 H_scalar_sv = 29.733136907996823
Ra = 1.55 Za = -0.1578947368421053 H_scalar = -8.36542568549703e-09
Ra = 1.55 Za = -0.1578947368421053 H_phi_t = -3950.5073207569662
Ra = 1.55 Za = -0.1578947368421053 H_phi_sv = 3950.5073207569467
Ra = 1.55 Za = -0.1578947368421053 H_phi = -1.9554136088117957e-11
Ra = 1.9125 Za = -0.1578947368421053 rot_H_z = -1.1823431123048067e-10
Ra = 1.9125 Za = -0.1578947368421053 rot_H_r = -1.0402345651527867e-11
Ra = 1.9125 Za = -0.1578947368421053 H_scalar_t = 153.01393573201585
Ra = 1.9125 Za = -0.1578947368421053 H_scalar_sv = -153.01393573202176
Ra = 1.9125 Za = -0.1578947368421053 H_scalar = -5.9117155615240335e-12
Ra = 1.9125 Za = -0.1578947368421053 H_phi_t = -3007.564187943166
Ra = 1.9125 Za = -0.1578947368421053 H_phi_sv = 3007.5641879439527
Ra = 1.9125 Za = -0.1578947368421053 H_phi = 7.867129170335829e-10
Ra = 2.275 Za = -0.1578947368421053 rot_H_z = 2.637534635141492e-11
Ra = 2.275 Za = -0.1578947368421053 rot_H_r = -2.5856650154310046e-11
Ra = 2.275 Za = -0.1578947368421053 H_scalar_t = 180.04644647998114
Ra = 2.275 Za = -0.1578947368421053 H_scalar_sv = -180.04644647998543
Ra = 2.275 Za = -0.1578947368421053 H_scalar = -4.291678123991005e-12
Ra = 2.275 Za = -0.1578947368421053 H_phi_t = -2145.598356674777
Ra = 2.275 Za = -0.1578947368421053 H_phi_sv = 2145.5983566747827
Ra = 2.275 Za = -0.1578947368421053 H_phi = 5.9117155615240335e-12
Ra = 2.6375 Za = -0.1578947368421053 rot_H_z = 7.958078640513122e-13
Ra = 2.6375 Za = -0.1578947368421053 rot_H_r = -4.263256414560601e-13
Ra = 2.6375 Za = -0.1578947368421053 H_scalar_t = 148.47548505548926
Ra = 2.6375 Za = -0.1578947368421053 H_scalar_sv = -148.47548505548934
Ra = 2.6375 Za = -0.1578947368421053 H_scalar = -8.526512829121202e-14
Ra = 2.6375 Za = -0.1578947368421053 H_phi_t = -1491.79656578701
Ra = 2.6375 Za = -0.1578947368421053 H_phi_sv = 1491.796565787009
Ra = 2.6375 Za = -0.1578947368421053 H_phi = -9.094947017729282e-13
Ra = 3.0 Za = -0.1578947368421053 rot_H_z = 1.1141310096718371e-11
Ra = 3.0 Za = -0.1578947368421053 rot_H_r = -4.310578560762224e-10
Ra = 3.0 Za = -0.1578947368421053 H_scalar_t = 108.43031120300587
Ra = 3.0 Za = -0.1578947368421053 H_scalar_sv = -108.430311203006
Ra = 3.0 Za = -0.1578947368421053 H_scalar = -1.2789769243681803e-13
Ra = 3.0 Za = -0.1578947368421053 H_phi_t = -1035.7400348050232
Ra = 3.0 Za = -0.1578947368421053 H_phi_sv = 1035.740034805005
Ra = 3.0 Za = -0.1578947368421053 H_phi = -1.8189894035458565e-11
Ra = 0.1 Za = 0.1578947368421053 rot_H_z = -1.709850039333105e-10
Ra = 0.1 Za = 0.1578947368421053 rot_H_r = 2.9547209123848006e-10
Ra = 0.1 Za = 0.1578947368421053 H_scalar_t = 2290.6022720478495
Ra = 0.1 Za = 0.1578947368421053 H_scalar_sv = -2290.6022720478686
Ra = 0.1 Za = 0.1578947368421053 H_scalar = -1.9099388737231493e-11
Ra = 0.1 Za = 0.1578947368421053 H_phi_t = -752.577199917823
Ra = 0.1 Za = 0.1578947368421053 H_phi_sv = 752.5771999178028
Ra = 0.1 Za = 0.1578947368421053 H_phi = -2.0236257114447653e-11
Ra = 0.4625 Za = 0.1578947368421053 rot_H_z = 2.8194335754960775e-10
Ra = 0.4625 Za = 0.1578947368421053 rot_H_r = 6.139089236967266e-12
Ra = 0.4625 Za = 0.1578947368421053 H_scalar_t = 1867.8844748930485
Ra = 0.4625 Za = 0.1578947368421053 H_scalar_sv = -1867.8844748930824
Ra = 0.4625 Za = 0.1578947368421053 H_scalar = -3.387867764104158e-11
Ra = 0.4625 Za = 0.1578947368421053 H_phi_t = -3142.4650793845594
Ra = 0.4625 Za = 0.1578947368421053 H_phi_sv = -115858.77969402276
Ra = 0.4625 Za = 0.1578947368421053 H_phi = -119001.24477340732
Ra = 0.825 Za = 0.1578947368421053 rot_H_z = 3.183231456205249e-11
Ra = 0.825 Za = 0.1578947368421053 rot_H_r = 6.093614501878619e-11
Ra = 0.825 Za = 0.1578947368421053 H_scalar_t = 1145.0250792153113
Ra = 0.825 Za = 0.1578947368421053 H_scalar_sv = -1145.025079215301
Ra = 0.825 Za = 0.1578947368421053 H_scalar = 1.0231815394945443e-11
Ra = 0.825 Za = 0.1578947368421053 H_phi_t = -4473.487303624894
Ra = 0.825 Za = 0.1578947368421053 H_phi_sv = -62239.33173600558
Ra = 0.825 Za = 0.1578947368421053 H_phi = -66712.81903963047
Ra = 1.1875 Za = 0.1578947368421053 rot_H_z = -2.546585164964199e-11
Ra = 1.1875 Za = 0.1578947368421053 rot_H_r = -2.94903657049872e-10
Ra = 1.1875 Za = 0.1578947368421053 H_scalar_t = 466.04473657181467
Ra = 1.1875 Za = 0.1578947368421053 H_scalar_sv = -466.0447365718046
Ra = 1.1875 Za = 0.1578947368421053 H_scalar = 1.0061285138363019e-11
Ra = 1.1875 Za = 0.1578947368421053 H_phi_t = -4613.732206417989
Ra = 1.1875 Za = 0.1578947368421053 H_phi_sv = -41734.12102111451
Ra = 1.1875 Za = 0.1578947368421053 H_phi = -46347.8532275325
Ra = 1.55 Za = 0.1578947368421053 rot_H_z = 1.5377167983388063e-08
Ra = 1.55 Za = 0.1578947368421053 rot_H_r = -1.6879084796528332e-09
Ra = 1.55 Za = 0.1578947368421053 H_scalar_t = 29.73313691636225
Ra = 1.55 Za = 0.1578947368421053 H_scalar_sv = -29.733136907996823
Ra = 1.55 Za = 0.1578947368421053 H_scalar = 8.36542568549703e-09
Ra = 1.55 Za = 0.1578947368421053 H_phi_t = -3950.5073207569662
Ra = 1.55 Za = 0.1578947368421053 H_phi_sv = 3950.5073207569467
Ra = 1.55 Za = 0.1578947368421053 H_phi = -1.9554136088117957e-11
Ra = 1.9125 Za = 0.1578947368421053 rot_H_z = -1.184616849059239e-10
Ra = 1.9125 Za = 0.1578947368421053 rot_H_r = 1.0459189070388675e-11
Ra = 1.9125 Za = 0.1578947368421053 H_scalar_t = -153.01393573201585
Ra = 1.9125 Za = 0.1578947368421053 H_scalar_sv = 153.01393573202176
Ra = 1.9125 Za = 0.1578947368421053 H_scalar = 5.9117155615240335e-12
Ra = 1.9125 Za = 0.1578947368421053 H_phi_t = -3007.564187943166
Ra = 1.9125 Za = 0.1578947368421053 H_phi_sv = 3007.5641879439527
Ra = 1.9125 Za = 0.1578947368421053 H_phi = 7.867129170335829e-10
Ra = 2.275 Za = 0.1578947368421053 rot_H_z = 2.637534635141492e-11
Ra = 2.275 Za = 0.1578947368421053 rot_H_r = 2.5856650154310046e-11
Ra = 2.275 Za = 0.1578947368421053 H_scalar_t = -180.04644647998114
Ra = 2.275 Za = 0.1578947368421053 H_scalar_sv = 180.04644647998543
Ra = 2.275 Za = 0.1578947368421053 H_scalar = 4.291678123991005e-12
Ra = 2.275 Za = 0.1578947368421053 H_phi_t = -2145.598356674777
Ra = 2.275 Za = 0.1578947368421053 H_phi_sv = 2145.5983566747827
Ra = 2.275 Za = 0.1578947368421053 H_phi = 5.9117155615240335e-12
Ra = 2.6375 Za = 0.1578947368421053 rot_H_z = 7.958078640513122e-13
Ra = 2.6375 Za = 0.1578947368421053 rot_H_r = 4.263256414560601e-13
Ra = 2.6375 Za = 0.1578947368421053 H_scalar_t = -148.47548505548926
Ra = 2.6375 Za = 0.1578947368421053 H_scalar_sv = 148.47548505548934
Ra = 2.6375 Za = 0.1578947368421053 H_scalar = 8.526512829121202e-14
Ra = 2.6375 Za = 0.1578947368421053 H_phi_t = -1491.79656578701
Ra = 2.6375 Za = 0.1578947368421053 H_phi_sv = 1491.796565787009
Ra = 2.6375 Za = 0.1578947368421053 H_phi = -9.094947017729282e-13
Ra = 3.0 Za = 0.1578947368421053 rot_H_z = 1.1141310096718371e-11
Ra = 3.0 Za = 0.1578947368421053 rot_H_r = 4.310862777856528e-10
Ra = 3.0 Za = 0.1578947368421053 H_scalar_t = -108.43031120300587
Ra = 3.0 Za = 0.1578947368421053 H_scalar_sv = 108.430311203006
Ra = 3.0 Za = 0.1578947368421053 H_scalar = 1.2789769243681803e-13
Ra = 3.0 Za = 0.1578947368421053 H_phi_t = -1035.7400348050232
Ra = 3.0 Za = 0.1578947368421053 H_phi_sv = 1035.740034805005
Ra = 3.0 Za = 0.1578947368421053 H_phi = -1.8189894035458565e-11
Ra = 0.1 Za = 0.4736842105263155 rot_H_z = -2.1100277081131935e-10
Ra = 0.1 Za = 0.4736842105263155 rot_H_r = 7.09405867382884e-11
Ra = 0.1 Za = 0.4736842105263155 H_scalar_t = 7824.894240198829
Ra = 0.1 Za = 0.4736842105263155 H_scalar_sv = -7824.894240198861
Ra = 0.1 Za = 0.4736842105263155 H_scalar = -3.183231456205249e-11
Ra = 0.1 Za = 0.4736842105263155 H_phi_t = -1075.96269591621
Ra = 0.1 Za = 0.4736842105263155 H_phi_sv = 1075.962695916192
Ra = 0.1 Za = 0.4736842105263155 H_phi = -1.7962520360015333e-11
Ra = 0.4625 Za = 0.4736842105263155 rot_H_z = -6.184563972055912e-11
Ra = 0.4625 Za = 0.4736842105263155 rot_H_r = 4.0472514228895307e-10
Ra = 0.4625 Za = 0.4736842105263155 H_scalar_t = 6241.070471484691
Ra = 0.4625 Za = 0.4736842105263155 H_scalar_sv = -6241.070471484738
Ra = 0.4625 Za = 0.4736842105263155 H_scalar = -4.729372449219227e-11
Ra = 0.4625 Za = 0.4736842105263155 H_phi_t = -4369.3503375438695
Ra = 0.4625 Za = 0.4736842105263155 H_phi_sv = -114631.89443585117
Ra = 0.4625 Za = 0.4736842105263155 H_phi = -119001.24477339504
Ra = 0.825 Za = 0.4736842105263155 rot_H_z = -1.6916601452976465e-10
Ra = 0.825 Za = 0.4736842105263155 rot_H_r = 2.9194779926910996e-10
Ra = 0.825 Za = 0.4736842105263155 H_scalar_t = 3640.6721521742247
Ra = 0.825 Za = 0.4736842105263155 H_scalar_sv = -3640.6721521742165
Ra = 0.825 Za = 0.4736842105263155 H_scalar = 8.185452315956354e-12
Ra = 0.825 Za = 0.4736842105263155 H_phi_t = -5888.6796173264975
Ra = 0.825 Za = 0.4736842105263155 H_phi_sv = -60824.139422308435
Ra = 0.825 Za = 0.4736842105263155 H_phi = -66712.81903963494
Ra = 1.1875 Za = 0.4736842105263155 rot_H_z = -3.092281986027956e-11
Ra = 1.1875 Za = 0.4736842105263155 rot_H_r = -1.1368683772161603e-10
Ra = 1.1875 Za = 0.4736842105263155 H_scalar_t = 1324.9876080090567
Ra = 1.1875 Za = 0.4736842105263155 H_scalar_sv = -1324.9876080090555
Ra = 1.1875 Za = 0.4736842105263155 H_scalar = 1.1368683772161603e-12
Ra = 1.1875 Za = 0.4736842105263155 H_phi_t = -5664.531686387482
Ra = 1.1875 Za = 0.4736842105263155 H_phi_sv = -40683.32154115177
Ra = 1.1875 Za = 0.4736842105263155 H_phi = -46347.85322753925
Ra = 1.55 Za = 0.4736842105263155 rot_H_z = 8.347797120222822e-09
Ra = 1.55 Za = 0.4736842105263155 rot_H_r = -1.1527845344971865e-09
Ra = 1.55 Za = 0.4736842105263155 H_scalar_t = -65.89718800291452
Ra = 1.55 Za = 0.4736842105263155 H_scalar_sv = 65.89718800291485
Ra = 1.55 Za = 0.4736842105263155 H_scalar = 3.268496584496461e-13
Ra = 1.55 Za = 0.4736842105263155 H_phi_t = -4470.383342016856
Ra = 1.55 Za = 0.4736842105263155 H_phi_sv = 4470.383342016825
Ra = 1.55 Za = 0.4736842105263155 H_phi = -3.092281986027956e-11
Ra = 1.9125 Za = 0.4736842105263155 rot_H_z = -7.639755494892597e-11
Ra = 1.9125 Za = 0.4736842105263155 rot_H_r = 2.546585164964199e-11
Ra = 1.9125 Za = 0.4736842105263155 H_scalar_t = -565.6545266952597
Ra = 1.9125 Za = 0.4736842105263155 H_scalar_sv = 565.6545266952644
Ra = 1.9125 Za = 0.4736842105263155 H_scalar = 4.661160346586257e-12
Ra = 1.9125 Za = 0.4736842105263155 H_phi_t = -3136.230756553063
Ra = 1.9125 Za = 0.4736842105263155 H_phi_sv = 3136.2307565531
Ra = 1.9125 Za = 0.4736842105263155 H_phi = 3.6834535421803594e-11
Ra = 2.275 Za = 0.4736842105263155 rot_H_z = 1.4779288903810084e-11
Ra = 2.275 Za = 0.4736842105263155 rot_H_r = -3.410605131648481e-13
Ra = 2.275 Za = 0.4736842105263155 H_scalar_t = -581.2091045601836
Ra = 2.275 Za = 0.4736842105263155 H_scalar_sv = 581.2091045601776
Ra = 2.275 Za = 0.4736842105263155 H_scalar = -6.0254023992456496e-12
Ra = 2.275 Za = 0.4736842105263155 H_phi_t = -2105.4136552045106
Ra = 2.275 Za = 0.4736842105263155 H_phi_sv = 2105.4136552045043
Ra = 2.275 Za = 0.4736842105263155 H_phi = -6.366462912410498e-12
Ra = 2.6375 Za = 0.4736842105263155 rot_H_z = 2.7284841053187847e-12
Ra = 2.6375 Za = 0.4736842105263155 rot_H_r = 0.0
Ra = 2.6375 Za = 0.4736842105263155 H_scalar_t = -452.6578048274331
Ra = 2.6375 Za = 0.4736842105263155 H_scalar_sv = 452.6578048274334
Ra = 2.6375 Za = 0.4736842105263155 H_scalar = 2.8421709430404007e-13
Ra = 2.6375 Za = 0.4736842105263155 H_phi_t = -1415.4930766961868
Ra = 2.6375 Za = 0.4736842105263155 H_phi_sv = 1415.4930766961868
Ra = 2.6375 Za = 0.4736842105263155 H_phi = 0.0
Ra = 3.0 Za = 0.4736842105263155 rot_H_z = 1.2505552149377763e-12
Ra = 3.0 Za = 0.4736842105263155 rot_H_r = 1.5916157281026244e-12
Ra = 3.0 Za = 0.4736842105263155 H_scalar_t = -321.78014111428155
Ra = 3.0 Za = 0.4736842105263155 H_scalar_sv = 321.7801411142842
Ra = 3.0 Za = 0.4736842105263155 H_scalar = 2.6716406864579767e-12
Ra = 3.0 Za = 0.4736842105263155 H_phi_t = -969.3784375411549
Ra = 3.0 Za = 0.4736842105263155 H_phi_sv = 969.3784375411595
Ra = 3.0 Za = 0.4736842105263155 H_phi = 4.661160346586257e-12
Ra = 0.1 Za = 0.7894736842105261 rot_H_z = 9.393261279910803e-09
Ra = 0.1 Za = 0.7894736842105261 rot_H_r = 3.319655661471188e-10
Ra = 0.1 Za = 0.7894736842105261 H_scalar_t = 17006.518161121527
Ra = 0.1 Za = 0.7894736842105261 H_scalar_sv = -17006.518161121534
Ra = 0.1 Za = 0.7894736842105261 H_scalar = -7.275957614183426e-12
Ra = 0.1 Za = 0.7894736842105261 H_phi_t = -2001.8274398571364
Ra = 0.1 Za = 0.7894736842105261 H_phi_sv = 2001.8274398571161
Ra = 0.1 Za = 0.7894736842105261 H_phi = -2.0236257114447653e-11
Ra = 0.4625 Za = 0.7894736842105261 rot_H_z = -1.348598743788898e-08
Ra = 0.4625 Za = 0.7894736842105261 rot_H_r = -6.693881005048752e-10
Ra = 0.4625 Za = 0.7894736842105261 H_scalar_t = 12888.8302826603
Ra = 0.4625 Za = 0.7894736842105261 H_scalar_sv = -12888.83028266031
Ra = 0.4625 Za = 0.7894736842105261 H_scalar = -1.0913936421275139e-11
Ra = 0.4625 Za = 0.7894736842105261 H_phi_t = -7736.040375972181
Ra = 0.4625 Za = 0.7894736842105261 H_phi_sv = -111265.20439742276
Ra = 0.4625 Za = 0.7894736842105261 H_phi = -119001.24477339494
Ra = 0.825 Za = 0.7894736842105261 rot_H_z = 4.729372449219227e-11
Ra = 0.825 Za = 0.7894736842105261 rot_H_r = 2.582964953035116e-10
Ra = 0.825 Za = 0.7894736842105261 H_scalar_t = 6731.833217223965
Ra = 0.825 Za = 0.7894736842105261 H_scalar_sv = -6731.833217218716
Ra = 0.825 Za = 0.7894736842105261 H_scalar = 5.249603418633342e-09
Ra = 0.825 Za = 0.7894736842105261 H_phi_t = -9432.781775458037
Ra = 0.825 Za = 0.7894736842105261 H_phi_sv = -57280.037264172424
Ra = 0.825 Za = 0.7894736842105261 H_phi = -66712.81903963046
Ra = 1.1875 Za = 0.7894736842105261 rot_H_z = -2.7284841053187847e-12
Ra = 1.1875 Za = 0.7894736842105261 rot_H_r = 1.0913936421275139e-11
Ra = 1.1875 Za = 0.7894736842105261 H_scalar_t = 1847.2157476381371
Ra = 1.1875 Za = 0.7894736842105261 H_scalar_sv = -1847.2157476381253
Ra = 1.1875 Za = 0.7894736842105261 H_scalar = 1.1823431123048067e-11
Ra = 1.1875 Za = 0.7894736842105261 H_phi_t = -8087.3475829879535
Ra = 1.1875 Za = 0.7894736842105261 H_phi_sv = -38260.505644544806
Ra = 1.1875 Za = 0.7894736842105261 H_phi = -46347.85322753276
Ra = 1.55 Za = 0.7894736842105261 rot_H_z = 1.2432792573235929e-08
Ra = 1.55 Za = 0.7894736842105261 rot_H_r = -2.064552973024547e-10
Ra = 1.55 Za = 0.7894736842105261 H_scalar_t = -739.3629672941843
Ra = 1.55 Za = 0.7894736842105261 H_scalar_sv = 739.3629672941763
Ra = 1.55 Za = 0.7894736842105261 H_scalar = -7.958078640513122e-12
Ra = 1.55 Za = 0.7894736842105261 H_phi_t = -5486.076121327132
Ra = 1.55 Za = 0.7894736842105261 H_phi_sv = 5486.076121327103
Ra = 1.55 Za = 0.7894736842105261 H_phi = -2.9103830456733704e-11
Ra = 1.9125 Za = 0.7894736842105261 rot_H_z = -4.729372449219227e-11
Ra = 1.9125 Za = 0.7894736842105261 rot_H_r = 8.52112691518414e-09
Ra = 1.9125 Za = 0.7894736842105261 H_scalar_t = -1311.2694756767153
Ra = 1.9125 Za = 0.7894736842105261 H_scalar_sv = 1311.2694756767187
Ra = 1.9125 Za = 0.7894736842105261 H_scalar = 3.410605131648481e-12
Ra = 1.9125 Za = 0.7894736842105261 H_phi_t = -3243.0349817066235
Ra = 1.9125 Za = 0.7894736842105261 H_phi_sv = 3243.0349817066517
Ra = 1.9125 Za = 0.7894736842105261 H_phi = 2.8194335754960775e-11
Ra = 2.275 Za = 0.7894736842105261 rot_H_z = 1.6143530956469476e-11
Ra = 2.275 Za = 0.7894736842105261 rot_H_r = -1.3528733688872308e-11
Ra = 2.275 Za = 0.7894736842105261 H_scalar_t = -1081.2058700020616
Ra = 2.275 Za = 0.7894736842105261 H_scalar_sv = 1081.2058700020605
Ra = 2.275 Za = 0.7894736842105261 H_scalar = -1.1368683772161603e-12
Ra = 2.275 Za = 0.7894736842105261 H_phi_t = -1935.5915335252012
Ra = 2.275 Za = 0.7894736842105261 H_phi_sv = 1935.5915335251934
Ra = 2.275 Za = 0.7894736842105261 H_phi = -7.73070496506989e-12
Ra = 2.6375 Za = 0.7894736842105261 rot_H_z = -2.8294380172155797e-09
Ra = 2.6375 Za = 0.7894736842105261 rot_H_r = 7.958078640513122e-13
Ra = 2.6375 Za = 0.7894736842105261 H_scalar_t = -763.1392908081565
Ra = 2.6375 Za = 0.7894736842105261 H_scalar_sv = 763.1392908081561
Ra = 2.6375 Za = 0.7894736842105261 H_scalar = -3.410605131648481e-13
Ra = 2.6375 Za = 0.7894736842105261 H_phi_t = -1232.5316923365892
Ra = 2.6375 Za = 0.7894736842105261 H_phi_sv = 1232.5316923365863
Ra = 2.6375 Za = 0.7894736842105261 H_phi = -2.9558577807620168e-12
Ra = 3.0 Za = 0.7894736842105261 rot_H_z = 1.4779288903810084e-12
Ra = 3.0 Za = 0.7894736842105261 rot_H_r = 4.547473508864641e-13
Ra = 3.0 Za = 0.7894736842105261 H_scalar_t = -518.9235060222088
Ra = 3.0 Za = 0.7894736842105261 H_scalar_sv = 518.9235060222106
Ra = 3.0 Za = 0.7894736842105261 H_scalar = 1.8189894035458565e-12
Ra = 3.0 Za = 0.7894736842105261 H_phi_t = -830.7610796061784
Ra = 3.0 Za = 0.7894736842105261 H_phi_sv = 830.76107960618
Ra = 3.0 Za = 0.7894736842105261 H_phi = 1.5916157281026244e-12
Ra = 0.1 Za = 1.1052631578947363 rot_H_z = -3.346940502524376e-10
Ra = 0.1 Za = 1.1052631578947363 rot_H_r = 8.003553375601768e-10
Ra = 0.1 Za = 1.1052631578947363 H_scalar_t = 35895.39537325804
Ra = 0.1 Za = 1.1052631578947363 H_scalar_sv = -35895.39537325806
Ra = 0.1 Za = 1.1052631578947363 H_scalar = -2.1827872842550278e-11
Ra = 0.1 Za = 1.1052631578947363 H_phi_t = -4363.163608928118
Ra = 0.1 Za = 1.1052631578947363 H_phi_sv = 4363.163608927815
Ra = 0.1 Za = 1.1052631578947363 H_phi = -3.028617356903851e-10
Ra = 0.4625 Za = 1.1052631578947363 rot_H_z = -2.6411726139485836e-09
Ra = 0.4625 Za = 1.1052631578947363 rot_H_r = -1.4551915228366852e-11
Ra = 0.4625 Za = 1.1052631578947363 H_scalar_t = 24787.036655120297
Ra = 0.4625 Za = 1.1052631578947363 H_scalar_sv = -24787.03665509442
Ra = 0.4625 Za = 1.1052631578947363 H_scalar = 2.5876943254843354e-08
Ra = 0.4625 Za = 1.1052631578947363 H_phi_t = -16413.304950434664
Ra = 0.4625 Za = 1.1052631578947363 H_phi_sv = -102587.9398229603
Ra = 0.4625 Za = 1.1052631578947363 H_phi = -119001.24477339495
Ra = 0.825 Za = 1.1052631578947363 rot_H_z = -1.418811734765768e-10
Ra = 0.825 Za = 1.1052631578947363 rot_H_r = -3.044988261535764e-08
Ra = 0.825 Za = 1.1052631578947363 H_scalar_t = 10519.689746127216
Ra = 0.825 Za = 1.1052631578947363 H_scalar_sv = -10519.689746127198
Ra = 0.825 Za = 1.1052631578947363 H_scalar = 1.8189894035458565e-11
Ra = 0.825 Za = 1.1052631578947363 H_phi_t = -16784.35157146317
Ra = 0.825 Za = 1.1052631578947363 H_phi_sv = -49928.467468167335
Ra = 0.825 Za = 1.1052631578947363 H_phi = -66712.8190396305
Ra = 1.1875 Za = 1.1052631578947363 rot_H_z = 5.911715561524034e-11
Ra = 1.1875 Za = 1.1052631578947363 rot_H_r = 2.2919266484677792e-10
Ra = 1.1875 Za = 1.1052631578947363 H_scalar_t = 1424.5109871212137
Ra = 1.1875 Za = 1.1052631578947363 H_scalar_sv = -1424.510987121238
Ra = 1.1875 Za = 1.1052631578947363 H_scalar = -2.432898327242583e-11
Ra = 1.1875 Za = 1.1052631578947363 H_phi_t = -12636.652826071124
Ra = 1.1875 Za = 1.1052631578947363 H_phi_sv = -33711.200401461654
Ra = 1.1875 Za = 1.1052631578947363 H_phi = -46347.853227532774
Ra = 1.55 Za = 1.1052631578947363 rot_H_z = 1.2601958587765694e-08
Ra = 1.55 Za = 1.1052631578947363 rot_H_r = 7.844391802791506e-10
Ra = 1.55 Za = 1.1052631578947363 H_scalar_t = -2911.613229055672
Ra = 1.55 Za = 1.1052631578947363 H_scalar_sv = 2911.6132290480537
Ra = 1.55 Za = 1.1052631578947363 H_scalar = -7.618382369400933e-09
Ra = 1.55 Za = 1.1052631578947363 H_phi_t = -6775.806558049015
Ra = 1.55 Za = 1.1052631578947363 H_phi_sv = 6775.806558049004
Ra = 1.55 Za = 1.1052631578947363 H_phi = -1.0913936421275139e-11
Ra = 1.9125 Za = 1.1052631578947363 rot_H_z = -4.3655745685100555e-11
Ra = 1.9125 Za = 1.1052631578947363 rot_H_r = -7.003109203651547e-11
Ra = 1.9125 Za = 1.1052631578947363 H_scalar_t = -2573.58760489603
Ra = 1.9125 Za = 1.1052631578947363 H_scalar_sv = 2573.5876048967807
Ra = 1.9125 Za = 1.1052631578947363 H_scalar = 7.507878763135523e-10
Ra = 1.9125 Za = 1.1052631578947363 H_phi_t = -2865.629303525888
Ra = 1.9125 Za = 1.1052631578947363 H_phi_sv = 2865.629303525919
Ra = 1.9125 Za = 1.1052631578947363 H_phi = 3.092281986027956e-11
Ra = 2.275 Za = 1.1052631578947363 rot_H_z = 7.958078640513122e-12
Ra = 2.275 Za = 1.1052631578947363 rot_H_r = 1.8189894035458565e-12
Ra = 2.275 Za = 1.1052631578947363 H_scalar_t = -1634.0598677056782
Ra = 2.275 Za = 1.1052631578947363 H_scalar_sv = 1634.0598677056805
Ra = 2.275 Za = 1.1052631578947363 H_scalar = 2.2737367544323206e-12
Ra = 2.275 Za = 1.1052631578947363 H_phi_t = -1471.4013891073955
Ra = 2.275 Za = 1.1052631578947363 H_phi_sv = 1471.4013891073903
Ra = 2.275 Za = 1.1052631578947363 H_phi = -5.229594535194337e-12
Ra = 2.6375 Za = 1.1052631578947363 rot_H_z = 2.8421709430404007e-12
Ra = 2.6375 Za = 1.1052631578947363 rot_H_r = 1.3642420526593924e-12
Ra = 2.6375 Za = 1.1052631578947363 H_scalar_t = -1035.4673586191163
Ra = 2.6375 Za = 1.1052631578947363 H_scalar_sv = 1035.467358619116
Ra = 2.6375 Za = 1.1052631578947363 H_scalar = -2.2737367544323206e-13
Ra = 2.6375 Za = 1.1052631578947363 H_phi_t = -906.985984553075
Ra = 2.6375 Za = 1.1052631578947363 H_phi_sv = 906.985984553075
Ra = 2.6375 Za = 1.1052631578947363 H_phi = 0.0
Ra = 3.0 Za = 1.1052631578947363 rot_H_z = 1.34718902700115e-11
Ra = 3.0 Za = 1.1052631578947363 rot_H_r = -8.753886504564434e-12
Ra = 3.0 Za = 1.1052631578947363 H_scalar_t = -674.2192485926955
Ra = 3.0 Za = 1.1052631578947363 H_scalar_sv = 674.2192485926939
Ra = 3.0 Za = 1.1052631578947363 H_scalar = -1.5916157281026244e-12
Ra = 3.0 Za = 1.1052631578947363 H_phi_t = -618.9797176468593
Ra = 3.0 Za = 1.1052631578947363 H_phi_sv = 618.9797176468558
Ra = 3.0 Za = 1.1052631578947363 H_phi = -3.524291969370097e-12
Ra = 0.1 Za = 1.421052631578947 rot_H_z = -2.3283064365386963e-10
Ra = 0.1 Za = 1.421052631578947 rot_H_r = -1.04046193882823e-09
Ra = 0.1 Za = 1.421052631578947 H_scalar_t = 71289.87501962858
Ra = 0.1 Za = 1.421052631578947 H_scalar_sv = -71289.87501962864
Ra = 0.1 Za = 1.421052631578947 H_scalar = -5.820766091346741e-11
Ra = 0.1 Za = 1.421052631578947 H_phi_t = -4066.683595818957
Ra = 0.1 Za = 1.421052631578947 H_phi_sv = 4066.6835958189577
Ra = 0.1 Za = 1.421052631578947 H_phi = 4.547473508864641e-13
Ra = 0.4625 Za = 1.421052631578947 rot_H_z = 1.6007106751203537e-10
Ra = 0.4625 Za = 1.421052631578947 rot_H_r = 1.1932570487260818e-09
Ra = 0.4625 Za = 1.421052631578947 H_scalar_t = 45600.142860108775
Ra = 0.4625 Za = 1.421052631578947 H_scalar_sv = -45600.14286010918
Ra = 0.4625 Za = 1.421052631578947 H_scalar = -4.0745362639427185e-10
Ra = 0.4625 Za = 1.421052631578947 H_phi_t = -44904.20689678377
Ra = 0.4625 Za = 1.421052631578947 H_phi_sv = -74097.03787661581
Ra = 0.4625 Za = 1.421052631578947 H_phi = -119001.24477339958
Ra = 0.825 Za = 1.421052631578947 rot_H_z = -3.0468072509393096e-10
Ra = 0.825 Za = 1.421052631578947 rot_H_r = 1.5352270565927029e-09
Ra = 0.825 Za = 1.421052631578947 H_scalar_t = 13537.551050694172
Ra = 0.825 Za = 1.421052631578947 H_scalar_sv = -13537.551050694161
Ra = 0.825 Za = 1.421052631578947 H_scalar = 1.0913936421275139e-11
Ra = 0.825 Za = 1.421052631578947 H_phi_t = -29756.834734695964
Ra = 0.825 Za = 1.421052631578947 H_phi_sv = -36955.98430493458
Ra = 0.825 Za = 1.421052631578947 H_phi = -66712.81903963054
Ra = 1.1875 Za = 1.421052631578947 rot_H_z = -3.219611244276166e-10
Ra = 1.1875 Za = 1.421052631578947 rot_H_r = -3.82351572625339e-08
Ra = 1.1875 Za = 1.421052631578947 H_scalar_t = -98.61012995435544
Ra = 1.1875 Za = 1.421052631578947 H_scalar_sv = 98.610129954365
Ra = 1.1875 Za = 1.421052631578947 H_scalar = 9.549694368615746e-12
Ra = 1.1875 Za = 1.421052631578947 H_phi_t = -20859.409898819657
Ra = 1.1875 Za = 1.421052631578947 H_phi_sv = -25488.443328713194
Ra = 1.1875 Za = 1.421052631578947 H_phi = -46347.85322753285
Ra = 1.55 Za = 1.421052631578947 rot_H_z = 2.0590960048139095e-08
Ra = 1.55 Za = 1.421052631578947 rot_H_r = -4.729372449219227e-10
Ra = 1.55 Za = 1.421052631578947 H_scalar_t = -10612.559174235003
Ra = 1.55 Za = 1.421052631578947 H_scalar_sv = 10612.55917423694
Ra = 1.55 Za = 1.421052631578947 H_scalar = 1.937223714776337e-09
Ra = 1.55 Za = 1.421052631578947 H_phi_t = -5908.7096471517125
Ra = 1.55 Za = 1.421052631578947 H_phi_sv = 5908.709647151717
Ra = 1.55 Za = 1.421052631578947 H_phi = 4.547473508864641e-12
Ra = 1.9125 Za = 1.421052631578947 rot_H_z = -6.798472895752639e-11
Ra = 1.9125 Za = 1.421052631578947 rot_H_r = 8.185452315956354e-11
Ra = 1.9125 Za = 1.421052631578947 H_scalar_t = -3840.4243611244165
Ra = 1.9125 Za = 1.421052631578947 H_scalar_sv = 3840.4243611244246
Ra = 1.9125 Za = 1.421052631578947 H_scalar = 8.185452315956354e-12
Ra = 1.9125 Za = 1.421052631578947 H_phi_t = -1077.0557048367284
Ra = 1.9125 Za = 1.421052631578947 H_phi_sv = 1077.0557048379242
Ra = 1.9125 Za = 1.421052631578947 H_phi = 1.1957581591559574e-09
Ra = 2.275 Za = 1.421052631578947 rot_H_z = 3.865352482534945e-12
Ra = 2.275 Za = 1.421052631578947 rot_H_r = -1.9099388737231493e-11
Ra = 2.275 Za = 1.421052631578947 H_scalar_t = -1982.7156955637063
Ra = 2.275 Za = 1.421052631578947 H_scalar_sv = 1982.715695563713
Ra = 2.275 Za = 1.421052631578947 H_scalar = 6.821210263296962e-12
Ra = 2.275 Za = 1.421052631578947 H_phi_t = -620.4094001852312
Ra = 2.275 Za = 1.421052631578947 H_phi_sv = 620.4094001852245
Ra = 2.275 Za = 1.421052631578947 H_phi = -6.707523425575346e-12
Ra = 2.6375 Za = 1.421052631578947 rot_H_z = 1.1259828625043156e-09
Ra = 2.6375 Za = 1.421052631578947 rot_H_r = -4.547473508864641e-13
Ra = 2.6375 Za = 1.421052631578947 H_scalar_t = -1180.3282649360506
Ra = 2.6375 Za = 1.421052631578947 H_scalar_sv = 1180.3282649360526
Ra = 2.6375 Za = 1.421052631578947 H_scalar = 2.0463630789890885e-12
Ra = 2.6375 Za = 1.421052631578947 H_phi_t = -452.95710874363925
Ra = 2.6375 Za = 1.421052631578947 H_phi_sv = 452.9571087436385
Ra = 2.6375 Za = 1.421052631578947 H_phi = -7.389644451905042e-13
Ra = 3.0 Za = 1.421052631578947 rot_H_z = 6.963318810448982e-13
Ra = 3.0 Za = 1.421052631578947 rot_H_r = -2.2737367544323206e-12
Ra = 3.0 Za = 1.421052631578947 H_scalar_t = -754.7174152156135
Ra = 3.0 Za = 1.421052631578947 H_scalar_sv = 754.7174152156133
Ra = 3.0 Za = 1.421052631578947 H_scalar = -2.2737367544323206e-13
Ra = 3.0 Za = 1.421052631578947 H_phi_t = -354.05653489913385
Ra = 3.0 Za = 1.421052631578947 H_phi_sv = 354.0565348991323
Ra = 3.0 Za = 1.421052631578947 H_phi = -1.5347723092418164e-12
Ra = 0.1 Za = 1.7368421052631575 rot_H_z = 1.4551915228366852e-11
Ra = 0.1 Za = 1.7368421052631575 rot_H_r = -2.000888343900442e-11
Ra = 0.1 Za = 1.7368421052631575 H_scalar_t = 52866.60702050565
Ra = 0.1 Za = 1.7368421052631575 H_scalar_sv = -52866.607020505355
Ra = 0.1 Za = 1.7368421052631575 H_scalar = 2.9831426218152046e-10
Ra = 0.1 Za = 1.7368421052631575 H_phi_t = 5866.737349542718
Ra = 0.1 Za = 1.7368421052631575 H_phi_sv = -5866.737349542719
Ra = 0.1 Za = 1.7368421052631575 H_phi = -9.094947017729282e-13
Ra = 0.4625 Za = 1.7368421052631575 rot_H_z = -2.473825588822365e-10
Ra = 0.4625 Za = 1.7368421052631575 rot_H_r = -3.2159732654690742e-09
Ra = 0.4625 Za = 1.7368421052631575 H_scalar_t = 34676.481907457965
Ra = 0.4625 Za = 1.7368421052631575 H_scalar_sv = -34676.48190745786
Ra = 0.4625 Za = 1.7368421052631575 H_scalar = 1.0186340659856796e-10
Ra = 0.4625 Za = 1.7368421052631575 H_phi_t = 25561.34641790954
Ra = 0.4625 Za = 1.7368421052631575 H_phi_sv = -25561.34641790946
Ra = 0.4625 Za = 1.7368421052631575 H_phi = 8.003553375601768e-11
Ra = 0.825 Za = 1.7368421052631575 rot_H_z = -2.473825588822365e-10
Ra = 0.825 Za = 1.7368421052631575 rot_H_r = -2.1827872842550278e-11
Ra = 0.825 Za = 1.7368421052631575 H_scalar_t = 12635.231203491221
Ra = 0.825 Za = 1.7368421052631575 H_scalar_sv = -12635.2312034912
Ra = 0.825 Za = 1.7368421052631575 H_scalar = 2.1827872842550278e-11
Ra = 0.825 Za = 1.7368421052631575 H_phi_t = 21955.84188348693
Ra = 0.825 Za = 1.7368421052631575 H_phi_sv = -21955.841883486944
Ra = 0.825 Za = 1.7368421052631575 H_phi = -1.4551915228366852e-11
Ra = 1.1875 Za = 1.7368421052631575 rot_H_z = 4.3655745685100555e-11
Ra = 1.1875 Za = 1.7368421052631575 rot_H_r = -1.6007106751203537e-10
Ra = 1.1875 Za = 1.7368421052631575 H_scalar_t = 888.7900305444798
Ra = 1.1875 Za = 1.7368421052631575 H_scalar_sv = -888.7900305444666
Ra = 1.1875 Za = 1.7368421052631575 H_scalar = 1.318767317570746e-11
Ra = 1.1875 Za = 1.7368421052631575 H_phi_t = 15401.625951548398
Ra = 1.1875 Za = 1.7368421052631575 H_phi_sv = -15401.625951548447
Ra = 1.1875 Za = 1.7368421052631575 H_phi = -4.9112713895738125e-11
Ra = 1.55 Za = 1.7368421052631575 rot_H_z = 1.127773430198431e-10
Ra = 1.55 Za = 1.7368421052631575 rot_H_r = -3.637978807091713e-11
Ra = 1.55 Za = 1.7368421052631575 H_scalar_t = -5231.190485586743
Ra = 1.55 Za = 1.7368421052631575 H_scalar_sv = 5231.190485583488
Ra = 1.55 Za = 1.7368421052631575 H_scalar = -3.25508153764531e-09
Ra = 1.55 Za = 1.7368421052631575 H_phi_t = 6352.500021326338
Ra = 1.55 Za = 1.7368421052631575 H_phi_sv = -6352.500021326359
Ra = 1.55 Za = 1.7368421052631575 H_phi = -2.091837814077735e-11
Ra = 1.9125 Za = 1.7368421052631575 rot_H_z = -7.275957614183426e-12
Ra = 1.9125 Za = 1.7368421052631575 rot_H_r = 1.4551915228366852e-11
Ra = 1.9125 Za = 1.7368421052631575 H_scalar_t = -3238.674943500589
Ra = 1.9125 Za = 1.7368421052631575 H_scalar_sv = 3238.6749435005813
Ra = 1.9125 Za = 1.7368421052631575 H_scalar = -7.73070496506989e-12
Ra = 1.9125 Za = 1.7368421052631575 H_phi_t = 1382.7433854206304
Ra = 1.9125 Za = 1.7368421052631575 H_phi_sv = -1382.743385420629
Ra = 1.9125 Za = 1.7368421052631575 H_phi = 1.3642420526593924e-12
Ra = 2.275 Za = 1.7368421052631575 rot_H_z = 5.9117155615240335e-12
Ra = 2.275 Za = 1.7368421052631575 rot_H_r = -6.366462912410498e-12
Ra = 2.275 Za = 1.7368421052631575 H_scalar_t = -1828.5414328382058
Ra = 2.275 Za = 1.7368421052631575 H_scalar_sv = 1828.5414328381964
Ra = 2.275 Za = 1.7368421052631575 H_scalar = -9.322320693172514e-12
Ra = 2.275 Za = 1.7368421052631575 H_phi_t = 333.2425405917736
Ra = 2.275 Za = 1.7368421052631575 H_phi_sv = -333.24254059177173
Ra = 2.275 Za = 1.7368421052631575 H_phi = 1.8758328224066645e-12
Ra = 2.6375 Za = 1.7368421052631575 rot_H_z = 4.320099833421409e-12
Ra = 2.6375 Za = 1.7368421052631575 rot_H_r = -4.774847184307873e-12
Ra = 2.6375 Za = 1.7368421052631575 H_scalar_t = -1129.506471800774
Ra = 2.6375 Za = 1.7368421052631575 H_scalar_sv = 1129.5064718007743
Ra = 2.6375 Za = 1.7368421052631575 H_scalar = 2.2737367544323206e-13
Ra = 2.6375 Za = 1.7368421052631575 H_phi_t = 24.17704228573879
Ra = 2.6375 Za = 1.7368421052631575 H_phi_sv = -24.177042285738366
Ra = 2.6375 Za = 1.7368421052631575 H_phi = 4.227729277772596e-13
Ra = 3.0 Za = 1.7368421052631575 rot_H_z = -1.1652900866465643e-12
Ra = 3.0 Za = 1.7368421052631575 rot_H_r = -3.069544618483633e-12
Ra = 3.0 Za = 1.7368421052631575 H_scalar_t = -741.002193098111
Ra = 3.0 Za = 1.7368421052631575 H_scalar_sv = 741.002193098118
Ra = 3.0 Za = 1.7368421052631575 H_scalar = 7.048583938740194e-12
Ra = 3.0 Za = 1.7368421052631575 H_phi_t = -81.69720683506374
Ra = 3.0 Za = 1.7368421052631575 H_phi_sv = 81.69720683506517
Ra = 3.0 Za = 1.7368421052631575 H_phi = 1.4352963262354024e-12
Ra = 0.1 Za = 2.052631578947368 rot_H_z = -2.1827872842550278e-11
Ra = 0.1 Za = 2.052631578947368 rot_H_r = -4.547473508864641e-12
Ra = 0.1 Za = 2.052631578947368 H_scalar_t = 25593.180183343295
Ra = 0.1 Za = 2.052631578947368 H_scalar_sv = -25593.18018334331
Ra = 0.1 Za = 2.052631578947368 H_scalar = -1.4551915228366852e-11
Ra = 0.1 Za = 2.052631578947368 H_phi_t = 2823.702056597654
Ra = 0.1 Za = 2.052631578947368 H_phi_sv = -2823.702056597656
Ra = 0.1 Za = 2.052631578947368 H_phi = -1.8189894035458565e-12
Ra = 0.4625 Za = 2.052631578947368 rot_H_z = -1.259904820472002e-07
Ra = 0.4625 Za = 2.052631578947368 rot_H_r = -1.8189894035458565e-11
Ra = 0.4625 Za = 2.052631578947368 H_scalar_t = 18804.27116300694
Ra = 0.4625 Za = 2.052631578947368 H_scalar_sv = -18804.27116300685
Ra = 0.4625 Za = 2.052631578947368 H_scalar = 8.731149137020111e-11
Ra = 0.4625 Za = 2.052631578947368 H_phi_t = 10558.62435865474
Ra = 0.4625 Za = 2.052631578947368 H_phi_sv = -10558.624358654692
Ra = 0.4625 Za = 2.052631578947368 H_phi = 4.9112713895738125e-11
Ra = 0.825 Za = 2.052631578947368 rot_H_z = -7.275957614183426e-12
Ra = 0.825 Za = 2.052631578947368 rot_H_r = -1.8189894035458565e-11
Ra = 0.825 Za = 2.052631578947368 H_scalar_t = 9299.142827900903
Ra = 0.825 Za = 2.052631578947368 H_scalar_sv = -9299.14282789939
Ra = 0.825 Za = 2.052631578947368 H_scalar = 1.5133991837501526e-09
Ra = 0.825 Za = 2.052631578947368 H_phi_t = 11754.73443681838
Ra = 0.825 Za = 2.052631578947368 H_phi_sv = -11754.73443681839
Ra = 0.825 Za = 2.052631578947368 H_phi = -9.094947017729282e-12
Ra = 1.1875 Za = 2.052631578947368 rot_H_z = -9.094947017729282e-13
Ra = 1.1875 Za = 2.052631578947368 rot_H_r = 1.127773430198431e-10
Ra = 1.1875 Za = 2.052631578947368 H_scalar_t = 2331.3039566846137
Ra = 1.1875 Za = 2.052631578947368 H_scalar_sv = -2331.3039566846055
Ra = 1.1875 Za = 2.052631578947368 H_scalar = 8.185452315956354e-12
Ra = 1.1875 Za = 2.052631578947368 H_phi_t = 9132.04048621465
Ra = 1.1875 Za = 2.052631578947368 H_phi_sv = -9132.040486214668
Ra = 1.1875 Za = 2.052631578947368 H_phi = -1.8189894035458565e-11
Ra = 1.55 Za = 2.052631578947368 rot_H_z = -4.8203219193965197e-11
Ra = 1.55 Za = 2.052631578947368 rot_H_r = -2.9103830456733704e-11
Ra = 1.55 Za = 2.052631578947368 H_scalar_t = -1208.8570494732996
Ra = 1.55 Za = 2.052631578947368 H_scalar_sv = 1208.857049473314
Ra = 1.55 Za = 2.052631578947368 H_scalar = 1.432454155292362e-11
Ra = 1.55 Za = 2.052631578947368 H_phi_t = 5193.9748252038335
Ra = 1.55 Za = 2.052631578947368 H_phi_sv = -5193.974825203841
Ra = 1.55 Za = 2.052631578947368 H_phi = -7.275957614183426e-12
Ra = 1.9125 Za = 2.052631578947368 rot_H_z = -6.366462912410498e-11
Ra = 1.9125 Za = 2.052631578947368 rot_H_r = 6.934897101018578e-12
Ra = 1.9125 Za = 2.052631578947368 H_scalar_t = -1707.2345896023533
Ra = 1.9125 Za = 2.052631578947368 H_scalar_sv = 1707.234589602367
Ra = 1.9125 Za = 2.052631578947368 H_scalar = 1.3642420526593924e-11
Ra = 1.9125 Za = 2.052631578947368 H_phi_t = 2266.5077019016926
Ra = 1.9125 Za = 2.052631578947368 H_phi_sv = -2266.507701901689
Ra = 1.9125 Za = 2.052631578947368 H_phi = 3.637978807091713e-12
Ra = 2.275 Za = 2.052631578947368 rot_H_z = -2.2964741219766438e-11
Ra = 2.275 Za = 2.052631578947368 rot_H_r = -1.8189894035458565e-12
Ra = 2.275 Za = 2.052631578947368 H_scalar_t = -1301.8898386800104
Ra = 2.275 Za = 2.052631578947368 H_scalar_sv = 1301.8898386800106
Ra = 2.275 Za = 2.052631578947368 H_scalar = 2.2737367544323206e-13
Ra = 2.275 Za = 2.052631578947368 H_phi_t = 942.9848705225468
Ra = 2.275 Za = 2.052631578947368 H_phi_sv = -942.9848705225452
Ra = 2.275 Za = 2.052631578947368 H_phi = 1.5916157281026244e-12
Ra = 2.6375 Za = 2.052631578947368 rot_H_z = -9.208633855450898e-12
Ra = 2.6375 Za = 2.052631578947368 rot_H_r = 5.684341886080801e-13
Ra = 2.6375 Za = 2.052631578947368 H_scalar_t = -915.9200581073269
Ra = 2.6375 Za = 2.052631578947368 H_scalar_sv = 915.9200581073355
Ra = 2.6375 Za = 2.052631578947368 H_scalar = 8.640199666842818e-12
Ra = 2.6375 Za = 2.052631578947368 H_phi_t = 390.6417091559723
Ra = 2.6375 Za = 2.052631578947368 H_phi_sv = -390.6417091559694
Ra = 2.6375 Za = 2.052631578947368 H_phi = 2.8990143619012088e-12
Ra = 3.0 Za = 2.052631578947368 rot_H_z = 5.684341886080802e-14
Ra = 3.0 Za = 2.052631578947368 rot_H_r = -1.1368683772161603e-13
Ra = 3.0 Za = 2.052631578947368 H_scalar_t = -645.2567674765179
Ra = 3.0 Za = 2.052631578947368 H_scalar_sv = 645.2567674765179
Ra = 3.0 Za = 2.052631578947368 H_scalar = 0.0
Ra = 3.0 Za = 2.052631578947368 H_phi_t = 146.27204208913423
Ra = 3.0 Za = 2.052631578947368 H_phi_sv = -146.2720420891347
Ra = 3.0 Za = 2.052631578947368 H_phi = -4.547473508864641e-13
Ra = 0.1 Za = 2.3684210526315788 rot_H_z = 0.0
Ra = 0.1 Za = 2.3684210526315788 rot_H_r = -1.3642420526593924e-12
Ra = 0.1 Za = 2.3684210526315788 H_scalar_t = 13464.060596373072
Ra = 0.1 Za = 2.3684210526315788 H_scalar_sv = -13464.060596373089
Ra = 0.1 Za = 2.3684210526315788 H_scalar = -1.6370904631912708e-11
Ra = 0.1 Za = 2.3684210526315788 H_phi_t = 1284.082743041571
Ra = 0.1 Za = 2.3684210526315788 H_phi_sv = -1284.0827430415718
Ra = 0.1 Za = 2.3684210526315788 H_phi = -9.094947017729282e-13
Ra = 0.4625 Za = 2.3684210526315788 rot_H_z = 3.637978807091713e-11
Ra = 0.4625 Za = 2.3684210526315788 rot_H_r = 0.0
Ra = 0.4625 Za = 2.3684210526315788 H_scalar_t = 10731.039237096233
Ra = 0.4625 Za = 2.3684210526315788 H_scalar_sv = -10731.039237096238
Ra = 0.4625 Za = 2.3684210526315788 H_scalar = -5.4569682106375694e-12
Ra = 0.4625 Za = 2.3684210526315788 H_phi_t = 5044.074447442882
Ra = 0.4625 Za = 2.3684210526315788 H_phi_sv = -5044.074447442885
Ra = 0.4625 Za = 2.3684210526315788 H_phi = -2.7284841053187847e-12
Ra = 0.825 Za = 2.3684210526315788 rot_H_z = 5.4569682106375694e-12
Ra = 0.825 Za = 2.3684210526315788 rot_H_r = 3.637978807091713e-12
Ra = 0.825 Za = 2.3684210526315788 H_scalar_t = 6352.333741604757
Ra = 0.825 Za = 2.3684210526315788 H_scalar_sv = -6352.333741604747
Ra = 0.825 Za = 2.3684210526315788 H_scalar = 1.000444171950221e-11
Ra = 0.825 Za = 2.3684210526315788 H_phi_t = 6338.500395797858
Ra = 0.825 Za = 2.3684210526315788 H_phi_sv = -6338.500395797862
Ra = 0.825 Za = 2.3684210526315788 H_phi = -4.547473508864641e-12
Ra = 1.1875 Za = 2.3684210526315788 rot_H_z = -1.2505552149377763e-12
Ra = 1.1875 Za = 2.3684210526315788 rot_H_r = 0.0
Ra = 1.1875 Za = 2.3684210526315788 H_scalar_t = 2528.3735567675403
Ra = 1.1875 Za = 2.3684210526315788 H_scalar_sv = -2528.373556767545
Ra = 1.1875 Za = 2.3684210526315788 H_scalar = -4.547473508864641e-12
Ra = 1.1875 Za = 2.3684210526315788 H_phi_t = 5524.9042836849685
Ra = 1.1875 Za = 2.3684210526315788 H_phi_sv = -5524.90428368497
Ra = 1.1875 Za = 2.3684210526315788 H_phi = -1.8189894035458565e-12
Ra = 1.55 Za = 2.3684210526315788 rot_H_z = 6.821210263296962e-12
Ra = 1.55 Za = 2.3684210526315788 rot_H_r = 2.000888343900442e-11
Ra = 1.55 Za = 2.3684210526315788 H_scalar_t = 223.58783112073527
Ra = 1.55 Za = 2.3684210526315788 H_scalar_sv = -223.58783112073507
Ra = 1.55 Za = 2.3684210526315788 H_scalar = 1.9895196601282805e-13
Ra = 1.55 Za = 2.3684210526315788 H_phi_t = 3769.1497625557536
Ra = 1.55 Za = 2.3684210526315788 H_phi_sv = -3769.149762555756
Ra = 1.55 Za = 2.3684210526315788 H_phi = -2.2737367544323206e-12
Ra = 1.9125 Za = 2.3684210526315788 rot_H_z = 4.547473508864641e-13
Ra = 1.9125 Za = 2.3684210526315788 rot_H_r = -7.048583938740194e-12
Ra = 1.9125 Za = 2.3684210526315788 H_scalar_t = -638.0050193016764
Ra = 1.9125 Za = 2.3684210526315788 H_scalar_sv = 638.0050193016766
Ra = 1.9125 Za = 2.3684210526315788 H_scalar = 2.2737367544323206e-13
Ra = 1.9125 Za = 2.3684210526315788 H_phi_t = 2157.8226022937006
Ra = 1.9125 Za = 2.3684210526315788 H_phi_sv = -2157.8226022937006
Ra = 1.9125 Za = 2.3684210526315788 H_phi = 0.0
Ra = 2.275 Za = 2.3684210526315788 rot_H_z = 2.2737367544323206e-13
Ra = 2.275 Za = 2.3684210526315788 rot_H_r = -2.7284841053187847e-12
Ra = 2.275 Za = 2.3684210526315788 H_scalar_t = -751.384847479375
Ra = 2.275 Za = 2.3684210526315788 H_scalar_sv = 751.3848474793717
Ra = 2.275 Za = 2.3684210526315788 H_scalar = -3.296918293926865e-12
Ra = 2.275 Za = 2.3684210526315788 H_phi_t = 1140.899386125135
Ra = 2.275 Za = 2.3684210526315788 H_phi_sv = -1140.8993861251356
Ra = 2.275 Za = 2.3684210526315788 H_phi = -6.821210263296962e-13
Ra = 2.6375 Za = 2.3684210526315788 rot_H_z = 5.7980287238024175e-12
Ra = 2.6375 Za = 2.3684210526315788 rot_H_r = 7.44648787076585e-12
Ra = 2.6375 Za = 2.3684210526315788 H_scalar_t = -642.1833001418679
Ra = 2.6375 Za = 2.3684210526315788 H_scalar_sv = 642.1833001418676
Ra = 2.6375 Za = 2.3684210526315788 H_scalar = -3.410605131648481e-13
Ra = 2.6375 Za = 2.3684210526315788 H_phi_t = 589.9224686269341
Ra = 2.6375 Za = 2.3684210526315788 H_phi_sv = -589.9224686254543
Ra = 2.6375 Za = 2.3684210526315788 H_phi = 1.4798615666222759e-09
Ra = 3.0 Za = 2.3684210526315788 rot_H_z = -4.263256414560601e-12
Ra = 3.0 Za = 2.3684210526315788 rot_H_r = 1.9895196601282805e-12
Ra = 3.0 Za = 2.3684210526315788 H_scalar_t = -504.4347483525029
Ra = 3.0 Za = 2.3684210526315788 H_scalar_sv = 504.43474835250186
Ra = 3.0 Za = 2.3684210526315788 H_scalar = -1.0231815394945443e-12
Ra = 3.0 Za = 2.3684210526315788 H_phi_t = 299.60029600221685
Ra = 3.0 Za = 2.3684210526315788 H_phi_sv = -299.6002960022129
Ra = 3.0 Za = 2.3684210526315788 H_phi = 3.979039320256561e-12
Ra = 0.1 Za = 2.6842105263157894 rot_H_z = -5.4569682106375694e-12
Ra = 0.1 Za = 2.6842105263157894 rot_H_r = -6.821210263296962e-13
Ra = 0.1 Za = 2.6842105263157894 H_scalar_t = 7691.927304359136
Ra = 0.1 Za = 2.6842105263157894 H_scalar_sv = -7691.92730435916
Ra = 0.1 Za = 2.6842105263157894 H_scalar = -2.4556356947869062e-11
Ra = 0.1 Za = 2.6842105263157894 H_phi_t = 643.8519861733145
Ra = 0.1 Za = 2.6842105263157894 H_phi_sv = -643.8519861733163
Ra = 0.1 Za = 2.6842105263157894 H_phi = -1.8189894035458565e-12
Ra = 0.4625 Za = 2.6842105263157894 rot_H_z = -5.4569682106375694e-12
Ra = 0.4625 Za = 2.6842105263157894 rot_H_r = -3.637978807091713e-12
Ra = 0.4625 Za = 2.6842105263157894 H_scalar_t = 6456.412112259111
Ra = 0.4625 Za = 2.6842105263157894 H_scalar_sv = -6456.412112259113
Ra = 0.4625 Za = 2.6842105263157894 H_scalar = -1.8189894035458565e-12
Ra = 0.4625 Za = 2.6842105263157894 H_phi_t = 2625.928470970355
Ra = 0.4625 Za = 2.6842105263157894 H_phi_sv = -2625.9284709702924
Ra = 0.4625 Za = 2.6842105263157894 H_phi = 6.275513442233205e-11
Ra = 0.825 Za = 2.6842105263157894 rot_H_z = 0.0
Ra = 0.825 Za = 2.6842105263157894 rot_H_r = -1.8189894035458565e-12
Ra = 0.825 Za = 2.6842105263157894 H_scalar_t = 4305.009310395599
Ra = 0.825 Za = 2.6842105263157894 H_scalar_sv = -4305.009310395601
Ra = 0.825 Za = 2.6842105263157894 H_scalar = -1.8189894035458565e-12
Ra = 0.825 Za = 2.6842105263157894 H_phi_t = 3554.905764923785
Ra = 0.825 Za = 2.6842105263157894 H_phi_sv = -3554.905764923805
Ra = 0.825 Za = 2.6842105263157894 H_phi = -2.000888343900442e-11
Ra = 1.1875 Za = 2.6842105263157894 rot_H_z = -1.2505552149377763e-11
Ra = 1.1875 Za = 2.6842105263157894 rot_H_r = -1.8189894035458565e-12
Ra = 1.1875 Za = 2.6842105263157894 H_scalar_t = 2196.072997993688
Ra = 1.1875 Za = 2.6842105263157894 H_scalar_sv = -2196.0729979936887
Ra = 1.1875 Za = 2.6842105263157894 H_scalar = -4.547473508864641e-13
Ra = 1.1875 Za = 2.6842105263157894 H_phi_t = 3405.501330350127
Ra = 1.1875 Za = 2.6842105263157894 H_phi_sv = -3405.501330327228
Ra = 1.1875 Za = 2.6842105263157894 H_phi = 2.28988028538879e-08
Ra = 1.55 Za = 2.6842105263157894 rot_H_z = -9.43600753089413e-12
Ra = 1.55 Za = 2.6842105263157894 rot_H_r = -3.456079866737127e-11
Ra = 1.55 Za = 2.6842105263157894 H_scalar_t = 713.6077787135542
Ra = 1.55 Za = 2.6842105263157894 H_scalar_sv = -713.6077787135546
Ra = 1.55 Za = 2.6842105263157894 H_scalar = -3.410605131648481e-13
Ra = 1.55 Za = 2.6842105263157894 H_phi_t = 2637.969794676703
Ra = 1.55 Za = 2.6842105263157894 H_phi_sv = -2637.9697946767096
Ra = 1.55 Za = 2.6842105263157894 H_phi = -6.821210263296962e-12
Ra = 1.9125 Za = 2.6842105263157894 rot_H_z = -1.1368683772161603e-12
Ra = 1.9125 Za = 2.6842105263157894 rot_H_r = -1.2960299500264227e-11
Ra = 1.9125 Za = 2.6842105263157894 H_scalar_t = -56.31829006571619
Ra = 1.9125 Za = 2.6842105263157894 H_scalar_sv = 56.31829006571695
Ra = 1.9125 Za = 2.6842105263157894 H_scalar = 7.602807272633072e-13
Ra = 1.9125 Za = 2.6842105263157894 H_phi_t = 1769.890007142775
Ra = 1.9125 Za = 2.6842105263157894 H_phi_sv = -1769.890007142766
Ra = 1.9125 Za = 2.6842105263157894 H_phi = 8.86757334228605e-12
Ra = 2.275 Za = 2.6842105263157894 rot_H_z = 5.6843418860808015e-12
Ra = 2.275 Za = 2.6842105263157894 rot_H_r = -3.126388037344441e-12
Ra = 2.275 Za = 2.6842105263157894 H_scalar_t = -340.7999334934701
Ra = 2.275 Za = 2.6842105263157894 H_scalar_sv = 340.79993349347876
Ra = 2.275 Za = 2.6842105263157894 H_scalar = 8.640199666842818e-12
Ra = 2.275 Za = 2.6842105263157894 H_phi_t = 1092.7777383125676
Ra = 2.275 Za = 2.6842105263157894 H_phi_sv = -1092.777738312566
Ra = 2.275 Za = 2.6842105263157894 H_phi = 1.5916157281026244e-12
Ra = 2.6375 Za = 2.6842105263157894 rot_H_z = 3.637978807091713e-12
Ra = 2.6375 Za = 2.6842105263157894 rot_H_r = 8.171241461241152e-14
Ra = 2.6375 Za = 2.6842105263157894 H_scalar_t = -391.98251298861726
Ra = 2.6375 Za = 2.6842105263157894 H_scalar_sv = 391.9825129886252
Ra = 2.6375 Za = 2.6842105263157894 H_scalar = 7.958078640513122e-12
Ra = 2.6375 Za = 2.6842105263157894 H_phi_t = 648.7811376773728
Ra = 2.6375 Za = 2.6842105263157894 H_phi_sv = -648.7811376773668
Ra = 2.6375 Za = 2.6842105263157894 H_phi = 6.0254023992456496e-12
Ra = 3.0 Za = 2.6842105263157894 rot_H_z = -3.979039320256561e-12
Ra = 3.0 Za = 2.6842105263157894 rot_H_r = -1.9895196601282805e-13
Ra = 3.0 Za = 2.6842105263157894 H_scalar_t = -357.05507452115796
Ra = 3.0 Za = 2.6842105263157894 H_scalar_sv = 357.05507452115637
Ra = 3.0 Za = 2.6842105263157894 H_scalar = -1.5916157281026244e-12
Ra = 3.0 Za = 2.6842105263157894 H_phi_t = 377.67297566785834
Ra = 3.0 Za = 2.6842105263157894 H_phi_sv = -377.67297566785436
Ra = 3.0 Za = 2.6842105263157894 H_phi = 3.979039320256561e-12
Ra = 0.1 Za = 3.0 rot_H_z = -1.9099388737231493e-11
Ra = 0.1 Za = 3.0 rot_H_r = -1.0231815394945443e-12
Ra = 0.1 Za = 3.0 H_scalar_t = 4684.769465255218
Ra = 0.1 Za = 3.0 H_scalar_sv = -4684.769465255219
Ra = 0.1 Za = 3.0 H_scalar = -9.094947017729282e-13
Ra = 0.1 Za = 3.0 H_phi_t = 349.1571703234048
Ra = 0.1 Za = 3.0 H_phi_sv = -349.1571703234049
Ra = 0.1 Za = 3.0 H_phi = -1.1368683772161603e-13
Ra = 0.4625 Za = 3.0 rot_H_z = 9.094947017729282e-13
Ra = 0.4625 Za = 3.0 rot_H_r = -9.094947017729282e-13
Ra = 0.4625 Za = 3.0 H_scalar_t = 4075.169080273908
Ra = 0.4625 Za = 3.0 H_scalar_sv = -4075.169080273909
Ra = 0.4625 Za = 3.0 H_scalar = -9.094947017729282e-13
Ra = 0.4625 Za = 3.0 H_phi_t = 1460.275990841293
Ra = 0.4625 Za = 3.0 H_phi_sv = -1460.2759908412932
Ra = 0.4625 Za = 3.0 H_phi = -2.2737367544323206e-13
Ra = 0.825 Za = 3.0 rot_H_z = -1.3642420526593924e-12
Ra = 0.825 Za = 3.0 rot_H_r = 7.776179700158536e-11
Ra = 0.825 Za = 3.0 H_scalar_t = 2955.170854809854
Ra = 0.825 Za = 3.0 H_scalar_sv = -2955.170854809856
Ra = 0.825 Za = 3.0 H_scalar = -1.8189894035458565e-12
Ra = 0.825 Za = 3.0 H_phi_t = 2083.000048413843
Ra = 0.825 Za = 3.0 H_phi_sv = -2083.0000484138436
Ra = 0.825 Za = 3.0 H_phi = -4.547473508864641e-13
Ra = 1.1875 Za = 3.0 rot_H_z = -2.2737367544323206e-13
Ra = 1.1875 Za = 3.0 rot_H_r = -4.547473508864641e-13
Ra = 1.1875 Za = 3.0 H_scalar_t = 1760.8640438890293
Ra = 1.1875 Za = 3.0 H_scalar_sv = -1760.8640438890307
Ra = 1.1875 Za = 3.0 H_scalar = -1.3642420526593924e-12
Ra = 1.1875 Za = 3.0 H_phi_t = 2147.522281212658
Ra = 1.1875 Za = 3.0 H_phi_sv = -2147.522281212658
Ra = 1.1875 Za = 3.0 H_phi = 0.0
Ra = 1.55 Za = 3.0 rot_H_z = -5.4001247917767614e-12
Ra = 1.55 Za = 3.0 rot_H_r = -2.546585164964199e-11
Ra = 1.55 Za = 3.0 H_scalar_t = 814.6133501388293
Ra = 1.55 Za = 3.0 H_scalar_sv = -814.613350138827
Ra = 1.55 Za = 3.0 H_scalar = 2.3874235921539366e-12
Ra = 1.55 Za = 3.0 H_phi_t = 1827.8211378914446
Ra = 1.55 Za = 3.0 H_phi_sv = -1827.8211378914348
Ra = 1.55 Za = 3.0 H_phi = 9.777068044058979e-12
Ra = 1.9125 Za = 3.0 rot_H_z = 4.661160346586257e-12
Ra = 1.9125 Za = 3.0 rot_H_r = 4.4565240386873484e-11
Ra = 1.9125 Za = 3.0 H_scalar_t = 221.04348140593734
Ra = 1.9125 Za = 3.0 H_scalar_sv = -221.04348140593765
Ra = 1.9125 Za = 3.0 H_scalar = -3.126388037344441e-13
Ra = 1.9125 Za = 3.0 H_phi_t = 1368.5975488266547
Ra = 1.9125 Za = 3.0 H_phi_sv = -1368.597548826657
Ra = 1.9125 Za = 3.0 H_phi = -2.2737367544323206e-12
Ra = 2.275 Za = 3.0 rot_H_z = 3.637978807091713e-12
Ra = 2.275 Za = 3.0 rot_H_r = -2.2737367544323206e-13
Ra = 2.275 Za = 3.0 H_scalar_t = -79.96981378008734
Ra = 2.275 Za = 3.0 H_scalar_sv = 79.96981378008763
Ra = 2.275 Za = 3.0 H_scalar = 2.984279490192421e-13
Ra = 2.275 Za = 3.0 H_phi_t = 944.2129881279387
Ra = 2.275 Za = 3.0 H_phi_sv = -944.2129881279328
Ra = 2.275 Za = 3.0 H_phi = 5.9117155615240335e-12
Ra = 2.6375 Za = 3.0 rot_H_z = 5.115907697472721e-12
Ra = 2.6375 Za = 3.0 rot_H_r = 7.077005648170598e-12
Ra = 2.6375 Za = 3.0 H_scalar_t = -199.95424975596475
Ra = 2.6375 Za = 3.0 H_scalar_sv = 199.9542497559704
Ra = 2.6375 Za = 3.0 H_scalar = 5.6559201766503975e-12
Ra = 2.6375 Za = 3.0 H_phi_t = 621.1694637367258
Ra = 2.6375 Za = 3.0 H_phi_sv = -621.1694637367231
Ra = 2.6375 Za = 3.0 H_phi = 2.7284841053187847e-12
Ra = 3.0 Za = 3.0 rot_H_z = -1.1368683772161603e-13
Ra = 3.0 Za = 3.0 rot_H_r = -1.2168044349891716e-13
Ra = 3.0 Za = 3.0 H_scalar_t = -227.83849736415172
Ra = 3.0 Za = 3.0 H_scalar_sv = 227.83849736415016
Ra = 3.0 Za = 3.0 H_scalar = -1.5631940186722204e-12
Ra = 3.0 Za = 3.0 H_phi_t = 397.83291461769124
Ra = 3.0 Za = 3.0 H_phi_sv = -397.8329146176885
Ra = 3.0 Za = 3.0 H_phi = 2.7284841053187847e-12
In [114]:
line_thick = 0.005
arr_l = 0.15
arr_h = 0.025
color = "red"

def matplotlib_draw_cylinder(plt, z0 = 0):
    plt.plot(z0 + Zj1,      Rj2                 , z0 + Zj2,Rj2, marker='.', color = color)
    plt.plot(z0 + Zj2,      Rj2                 , z0 + Zj2,Rj1, marker='.', color = color, linestyle="dashed")
    plt.plot(z0 + Zj2,      Rj1                 , z0 + Zj1,Rj1, marker='.', color = color)
    plt.plot(z0 + Zj1,      Rj1                 , z0 + Zj1,Rj2, marker='.', color = color, linestyle="dashed")
In [115]:
fig,ax=plt.subplots(1,1)
matplotlib_draw_cylinder(ax, z0 = 0)
cp = ax.contourf(za_grid,ra_grid, h)
fig.colorbar(cp) # Add a colorbar to a plot
ax.set_title('Filled Contours H_phi vector field Plot')
ax.set_xlabel('z (cm)')
ax.set_ylabel('r (cm)')
plt.show()
In [116]:
from mpl_toolkits import mplot3d
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure()

ax = plt.axes(projection='3d')
ax.set_xlabel('z (cm)')
ax.set_ylabel('r (cm)')
ax.plot_surface(za_grid,ra_grid, h, cmap='viridis', edgecolor='none')
ax.set_title('H phi field plot')
plt.show()
In [117]:
fig,ax=plt.subplots(1,1)
matplotlib_draw_cylinder(ax, z0 = 0)
cp = ax.contourf(za_grid,ra_grid, s)
fig.colorbar(cp) # Add a colorbar to a plot
ax.set_title('Filled Contours Scalar field Plot')
ax.set_xlabel('z (cm)')
ax.set_ylabel('r (cm)')
plt.show()
In [118]:
fig,ax=plt.subplots(1,1)
matplotlib_draw_cylinder(ax, z0 = 0)
ax.quiver(za_grid,ra_grid,u,v)
ax.set_title('rot H field Plot')
ax.set_xlabel('z (cm)')
ax.set_ylabel('r (cm)')
plt.show()
In [119]:
from mpl_toolkits import mplot3d
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure()

ax = plt.axes(projection='3d')
ax.set_xlabel('z (cm)')
ax.set_ylabel('r (cm)')
ax.plot_surface(za_grid,ra_grid, s, cmap='viridis', edgecolor='none')
ax.set_title('Scalar field plot')
plt.show()
In [120]:
fig,ax=plt.subplots(1,1)
matplotlib_draw_cylinder(ax, z0 = 0)
cp = ax.contourf(za_grid,ra_grid, s_t)
fig.colorbar(cp) # Add a colorbar to a plot
ax.set_title('Filled Contours Scalar_t field Plot')
ax.set_xlabel('z (cm)')
ax.set_ylabel('r (cm)')
plt.show()
In [121]:
fig,ax=plt.subplots(1,1)
matplotlib_draw_cylinder(ax, z0 = 0)
cp = ax.contourf(za_grid,ra_grid, s_s)
fig.colorbar(cp) # Add a colorbar to a plot
ax.set_title('Filled Contours Scalar_s field Plot')
ax.set_xlabel('z (cm)')
ax.set_ylabel('r (cm)')
plt.show()
In [122]:
u_ex = u
v_ex = v
s_ex = s
h_ex = h

for iz in np.arange(0, len(za_linspace), 1):
    for ir in np.arange(0, len(ra_linspace), 1):
        Za = za_list[iz]
        Ra = ra_list[ir]
        if Za >= Zj1 and Za <= Zj2 and Ra >= Rj1 and Ra <= Rj2:
            u_ex[ir][iz] = np.nan
            v_ex[ir][iz] = np.nan
            s_ex[ir][iz] = np.nan
            h_ex[ir][iz] = np.nan
In [123]:
fig,ax=plt.subplots(1,1)
matplotlib_draw_cylinder(ax, z0 = 0)
cp = ax.contourf(za_grid,ra_grid, h_ex)
fig.colorbar(cp) # Add a colorbar to a plot
ax.set_title('Filled Contours H_phi vector field Plot')
ax.set_xlabel('z (cm)')
ax.set_ylabel('r (cm)')
plt.show()
In [124]:
from mpl_toolkits import mplot3d
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure()

ax = plt.axes(projection='3d')
ax.set_xlabel('z (cm)')
ax.set_ylabel('r (cm)')
ax.plot_surface(za_grid,ra_grid, h_ex, cmap='viridis', edgecolor='none')
ax.set_title('H phi field plot')
plt.show()
/usr3/articles/sagemath_docker_build/sage-9.1/local/lib/python3.7/site-packages/matplotlib/colors.py:507: RuntimeWarning: invalid value encountered in less
  xa[xa < 0] = -1
In [125]:
fig,ax=plt.subplots(1,1)
matplotlib_draw_cylinder(ax, z0 = 0)
cp = ax.contourf(za_grid,ra_grid, s_ex)
fig.colorbar(cp) # Add a colorbar to a plot
ax.set_title('Filled Contours Scalar field Plot')
ax.set_xlabel('z (cm)')
ax.set_ylabel('r (cm)')
plt.show()
In [126]:
fig,ax=plt.subplots(1,1)
matplotlib_draw_cylinder(ax, z0 = 0)
ax.quiver(za_grid,ra_grid,u_ex,v_ex)
ax.set_title('rot H field Plot')
ax.set_xlabel('z (cm)')
ax.set_ylabel('r (cm)')
plt.show()
In [127]:
from mpl_toolkits import mplot3d
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure()

ax = plt.axes(projection='3d')
ax.set_xlabel('z (cm)')
ax.set_ylabel('r (cm)')
ax.plot_surface(za_grid,ra_grid, s_ex, cmap='viridis', edgecolor='none')
ax.set_title('Scalar field plot')
plt.show()
/usr3/articles/sagemath_docker_build/sage-9.1/local/lib/python3.7/site-packages/matplotlib/colors.py:507: RuntimeWarning: invalid value encountered in less
  xa[xa < 0] = -1
In [ ]:
 
In [128]:
u_norm = u
v_norm = v

for iz in np.arange(0, len(za_linspace), 1):
    for ir in np.arange(0, len(ra_linspace), 1):
        n = sqrt(u[ir][iz]^2 + v[ir][iz]^2)
        u_norm[ir][iz] = u[ir][iz] / n
        v_norm[ir][iz] = v[ir][iz] / n
In [129]:
fig,ax=plt.subplots(1,1)
matplotlib_draw_cylinder(ax, z0 = 0)
ax.quiver(za_grid,ra_grid,u_norm,v_norm)
ax.set_title('rot H normalized field Plot')
ax.set_xlabel('z (cm)')
ax.set_ylabel('r (cm)')
plt.show()
In [ ]:
 
In [ ]: